

Reconstruction of spatial information with the 1-cell SBT prototype using a Neural Network

Albert-Ludwigs-Universität Freiburg

URG

~

Mahyar Jadidi 09.02.2023

1. Setup and Data

Testbeam at DESY

- A prototype SBT cell with
 80 × 120 × 25 cm³ scale.
- Each cell contains two Wavelength-Shifting Optical Modules (WOMs)
- An array of 40 silicon photomultipliers (SiPMs) per WOM to capture the photons.
- A group of 5 SiPMs signals read out.

Testbeam at DESY

Box rotation	0 °	±15°	±30°	±45°	±60°	±75°	±90°

 Beam Energy
 1.4 GeV
 2.4 GeV
 3.4 GeV
 4.4 GeV
 5.4 GeV

- Used Data for this presentation:
- 23 points
- 1.4 GeV
- 0° degree (beams are perpendicular to the cell)
- 10,000 events per beam position

Waveforms sample for one event

Information from Waveforms

- Charge spectrum: integrate waveform between left and right edge of window. (red lines) windows determined with peak's time.
- Timing: First photons arrival time. (blue line) measured the time when signal reaches 25% of the peak.
- 16 Timings + 16 Charge spectrums(CS)
 = 32 features per event.

2.Neural Network: Testbeam Data

Neural Network:

- Training and Test both are on the Testbeam Data
- Data set = 23 *10000 events
- 75% to train (D_{train})
- 25% to test (D_{test})
- Mean Absolute Error (MAE)=

$$\frac{1}{2N_{D_{test}}} \sum_{i \in D_{test}} (|x - x'_i| + |y - y'_i|)$$

Std Deviation (σ) =

 $\sqrt{\frac{\sum_{i}(x-\bar{x_{i}})^{2}}{N}}$ $x = true \ value \ , \ x' = predicted \ value$ $\bar{x} = mean \ of \ x$ $N_{D_{test}} = test \ data \ set \ size$

Neural Network: Different Features

- Timing: 16 features from 16 channels
- CS: 16 charge spectrums from 16 channels
- Timing and CS: (Timing + CS) contains 32 features for input layer
- Best choice: **Timing and CS**

Neural Network: Reconstructions

Neural Network: Reconstructions

- Mean $\sigma_x = 90.4 \text{ mm}$
- Mean $\sigma_y = 58.5 \text{ mm}$
- $MAE_x = 69.4 \text{ mm}$
- $MAE_y = 32.6 \text{ mm}$

Only D_{test} has been used for evaluating the reconstructions.

3. Neural Network: MC Simulation

MC Simulation GEANT4

- Same Data set as we have for Testbeam with same beam positions.
- From previous presentation: We should use 65% of the default reflectivity.
- Reconstruction results of MC simulation would be closer to Testbeam if we use 65% reflectivity (same bias)

Comparing the Obtained Results of MC and Testbeam

	Testbeam	Simulation
MAE _x mm	69.4	89.3
MAE _y mm	32.6	19.7
σ _x mm	90.4	87.1
σ _y mm	58.5	37.7

Comparing the Testbeam and the Simulation deviations ÷ $\sigma/2$ of Testbeam ⊨∎r 150 $\sigma/2$ of 65% Simulation 100 ⊨<u>∎</u>-' 1 50 0 -50-100-150┝╋╋ -200 埇 -250 -300 -350 -400ţ. -450 -500 -550 ┝┲╬ -600-650 50 50 300 350 400 450 50 300 50 200 50 100 0 100 150 200 250 450 400 14 m N **H**

Comparing the Obtained Results

Comparing Mean Absolute Error of Testbeam Data and Simulation

Conclusions

- 1-cell SBT prototype is capable to reconstruct the beam's position at 0 degree with: MAE = 51.0 (mm) σ = 72.4 (mm).
- We get better results if we use both Timing and Charge Spectrum.
- Testbeam data and MC agree better w.r.t spatial particle reconstruction if one uses 65% of the default reflectivity in Simulation.

Outlook

- One can possibly reconstruct the energy and the angle of the beam with same method.
- We can train the network with the MC Simulation data all over the cell and test it with the Testbeam data.

Thanks for your attention

Comparing Mean Absolute Error of Testbeam Data with Simulation

Comparing Mean Absolute Error of both Timing and CS Data with only CS

Comparing Mean Absolute Error of both Timing and CS Data with only CS

23