WOM Tube - Photon Exit Angle Distribution

Florian Rehbein, RWTH Aachen

3rd High-D Consortium Meeting February 9, 2023

Wavelength-Shifting Optical Modules

- Wavelength-Shifting Optical Module (WOM) = Large-Area Photodetector
- Cylindrical tube acts as light collector
- Outside of the tube coated with wavelength-shifting paint
 - ➔ Absorption of UV-photons, isotropic re-emission of visible light
- Internal total reflection, photons guided towards ends of tube
- Total capturing efficiency for secondary photons \approx 73% (ideally)
- **PMTs / SiPMs**: Detection of photons

Large effective area
Large acceptance angle

PMT / SiPM

UV-Photon

Photon exit angle measurements - Motivation

- How much light can we effectively measure with SiPMs?
 - ➔ Angular distribution of photons at exit window (SiPM angular acceptance)
- Optical properties of the WOM tube limit efficiency for detection of secondary photons
- Evaluate quality of WOM tube
 - ➔ Coating thickness
 - ➔ Surface quality
 - ➔ Efficieny of photon transport

Photon path (Geant4)

Photon exit angle measurements - Setup

- Idea: Use **DSLR camera** to capture photons of the WOM tube
- Change **exit angle** of captured photons by adjusting **camera angle** θ
- Light source: UV LED
 - $\lambda_{\text{peak}} = 375 \text{ nm}$
 - $-\Delta\lambda = 9.0 \text{ nm}$
 - Opening angle $\approx 40^{\circ}$
 - Placed in the middle of the tube in close distance to surface (≈ 2 cm)
 - ➔ Most photons hit the WOM surface approximately vertically

Photon exit angle measurements - Setup

Light source position

- Pixel coordinates of the camera sensor are transformed to reconstruct the geometry of the WOM surface (resolution ~ 0.1 mm)
- Map each camera sensor pixel to position on WOM surface

ወ

Allows for comparison of different camera angles

WOM Tube Simulation

- Based on simulation toolkit Geant4
- Simulation of light source (LED): Position, direction, wavelength distribution, opening angle
- Simulation of the WOM tube: Wavelength-shifting properties of the paint, reflection and attenuation of photons

Photon path (Geant4)

Simulated Images of WOM surface

- Simulation of camera lens at different angles
- Lens diameter and distance to tube correspond to real measurement setup
- All photons leaving the tube and end up hitting a simulated camera lens at given angle contribute to the reconstructed image
- Reconstruction of image = reconstruct the position of the photon when exiting the WOM tube

Different simulated camera lens angles (Geant4)

Simulation vs Measurement

- WOM surface better visible in real photos (more homogeneously illuminated)
 - → Simulated surface perfectly smooth, real surface has roughness/scratches/...
- Structural similarities clearly visible

Simulation vs Measurement

- WOM surface better visible in real photos (more homogeneously illuminated)
 - → Simulated surface perfectly smooth, real surface has roughness/scratches/...
- Structural similarities clearly visible

Simulation vs Measurement

- WOM surface better visible in real photos (more homogeneously illuminated)
 - → Simulated surface perfectly smooth, real surface has roughness/scratches/...
- Structural similarities clearly visible

What can we learn from the photos?

Tubes comparison

 ~ 5 micrometer thickness

- Double coating = two layers of paint
- ~ 20 micrometer thickness

Why are the distributions so different?

Tubes comparison

Tubes comparison

Simulation with significant differences, but seems to support the assumption

Tubes comparison

- Simulation confirms: Thicker layer of coating results in more photons on the other side of the tube
- Experimental setup provides measurement of coating thickness
- → Quality control?

Summary

- WOM tube simulations show good agreement with the measurement: structures can be reproduced
- Measurement setup sensitive to thickness of WLS paint
 Quality control
- Outlook: Automated setup with adjustable light source position
- Add grid of LEDs for calibration

Wavelength-Shifting Optical Modules

- First proposed for large-scale water Cherenkov detectors in neutrino physics (e.g. IceCube) 1
 - Instrumentation with large number of photosensitive devices (IceCube: PMTs)
 - Sensitivity limited by mass of instrumented volume, instrumentation density and photo collection area of each sensor
 - More photodetectors: significant cost factor
 - Larger photodetectors increase noise rate
- Solution: Increase sensitive area of each detector with light collector

¹ The Wavelength-shifting Optical Module (arXiv:2112.12258)

physik.hu-berlin.de

20" PMT, Super-Kamiokande

17

WOMs in large-area liquid-scintillator detectors (SHiP-SBT)

- SBT (Surround Background Tagger)
 - Filled with ~300 m³ liquid scintillator (divided into cells)
 - ➔ Solvent: LAB (Linear alkylbenzene)
 - → Fluor: PPO (2,5-diphenyloxazole), 2g/l

- Energy resolution and energy threshold limited by properties of photo sensors → Highly efficient
- Large volume → **Cost-effective**

WOMs in large-area liquid-scintillator detectors (SHiP-SBT)

• PMMA tube:

- 23 cm length, 60 mm diameter, 3 mm thickness
- Coated with wavelength-shifting (WLS) paint (Bis-MSB)

Vessel

PMMA vessel:

- Insulation from liquid scintillator
- Photosensors:
 - 40 SiPMs directly coupled to the exit surface of the tube
 - 3 mm \times 3 mm sensitive area

40-SiPM PCB

WOM tube

WOM Tubes and Surfaces

Photon exit angle distribution

