Photon Yield and Time Response of a Wavelength Shifter Coated Polystyrene Strip

A. Brignoli, C. Eckardt, H. Lacker, **C. Mullesch**, C. Scharf, B. Skodda

> Institut für Physik Humboldt-Universität zu Berlin

 3^{rd} High-D consortium meeting, 9^{th} - 10^{th} February 2023

Bundesministerium für Bildung und Forschung

(日) (部) (王) (王)

Overall Goal and Previous Work

Goal and Previous Work

- Goal: Determine photon yield and time response of a low-cost and easy to build plastic scintillator
- Previous work: Wavelength shifter (WLS) coated polystyrene (PS) is suitable¹ (presented at the last High-D consortium meeting²)
 - Findings from analyzing a 50 × 50 × 5 mm³ piece of coated PS: Light output vs. cost motivates further studies
- In this work, we want to examine a larger PS strip with dimensions of order $400 \times 50 \times 5 \text{ mm}^3$ and analyze its photon yield and time response

Christophe Mullesch

¹arxiv.org/abs/2210.10083

² indico.desy.de/event/35259/contributions/127483/attachments/76579/98837/

HighD_Doramas_Jimeno.pdf

Setup Measurements

Setup - Concept

- Components:
 - Two calibrated 3 Hamamatsu R1924A photomultiplier tubes (PMTs) operating at 1 kV
 - ${}^{90}Sr \beta^{-}$ source
 - Triggerbox³
 - 398 x 50 x 5 mm³ coated PS slide wrapped in Dupont[™] Tyvek[®] 1073D
 - Silicone paste⁴ for optical coupling between PS and PMT
- Whole setup located in a darkbox

⁴KORASILONE[®] medium viscosity

э

 $^{^{3}}$ The calibration procedure and the triggerbox are the same as used in the previous work

Setup Measurements

Setup - Implementation

æ

Setup Measurements

Setup - Coated PS

- Some trouble with dipcoating (non-uniform middle region, damaged paint due to machining after coating)
- Expect impact on overall performance, expecially in middle region

Christophe Mullesch

Setup Measurements

Measurements - Outline

- β^- penetration \rightarrow Cherenkov & scintillation in PS \rightarrow voltage signal in PMTs
- Readout: WaveCatcher digitizer⁵ and WaveCatcher Data Analysis Software ReadRun⁶ based on ROOT Cern C++ framework⁷
- From PMT signal, extract as a function of source position:
 - Photon yield expressed in number of photoelectrons (#PE) from distribution of area under the signal (time integrated spectrum)
 - Timing information using constant fraction discrimination (CFD)⁸

э

^bWaveCatcher Family User's Manual

⁶ReadRun GitHub

⁷ROOT Data Analysis Framework

 $^{^{8}}$ Troughout the analysis, a constant fraction value of 0.15 was used

Waveforms and Integration Window

- Integration window: [-10 ns, 80 ns] relative to maximum
- Example waveform:^{9,10}

 9 Channel 17 corresponds to the left PMT, channel 19 is the right PMT

 $^{10}\mathrm{Waveform}$ at a source position of 6 cm

Christophe Mullesch

6/16

イロト イボト イヨト イヨト

Results on Photon Yield Results on Time Response

Time Integrated Spectra

- Thin-layer energy loss of charged particles \rightarrow Landau distribution
- Electronic noise in the readout setup \rightarrow Gaussian distribution

 \Rightarrow Landau * Gauß convolution to fit time-integrated spectra

• MPV of fit translated into #PE using calibration value (PMT gain)

Photon Yields and Effective Attenuation Length

- Expect exponential relation between #PE and distance traveled (Beer-Lambert-Law)
 - \Rightarrow Exponential fit \rightarrow effective attenuation length¹¹ λ_{att}

¹¹Transmission measurements in previous work yield $\lambda_{att} = \mathcal{O}(30 \text{ cm}) \quad \langle \Box \rangle \quad \langle \overline{\Box} \rangle \quad \langle \overline{\Xi} \rangle \quad \langle \overline{\Xi} \rangle \quad \overline{\Xi} \quad \mathcal{O} \land \overline{C}$

Christophe Mullesch

Results on Photon Yield Results on Time Response

Uniformity of Photon Yield

- Exponential relation between #PE and distance traveled
 - \rightarrow expect geometric mean of photon yields of both PMTs to be constant for every source position^{12}

Geometric mean of photon yields in both PMTs

¹²The non-uniformity observed is likely due to the overall quality of the coated PS strip

Christophe Mullesch

Time Response - Signal Arrival Time

- Distribution of signal timing t_i := t_{CFD,i} ¹/₂(t_{lower Trigger} + t_{upper Trigger}) where i ∈ {L,R} and t_{CFD,i} is the timing acquired from the waveform of the PMT signal
- For long travel distances, this distribution shows exponential decay-like tail

Time Response - Signal Arrival Time

- From literature:¹³ Shape is affected by both light collection process and self-absorption & re-emission in the WLS layer
- Good fit results achieved by using a Gauß * Exp convolution f * g where

$$f(x) \propto \exp\left(-rac{(x-t_0)^2}{2\sigma^2}
ight), \qquad g(x) \propto \exp\left(-rac{x}{ au}
ight)$$

• Interpreting t₀ as the signal arrival time allows to extract effective signal speed in the detector

Results on Photon Yield Results on Time Response

Time Response - Signal Arrival Time

Time Response - Effective Signal Speed

- Linear fit¹⁴ ax + b to signal arrival time t₀ as function of source position → effective signal speed
- Effective signal speeds agree for both PMTs, <u>and</u> difference in offset parameter agrees with known cable length difference¹⁵ \rightarrow consistency

 14 We expect the signal arrival time to be proportional to the inverse signal speed, including an offset to account for different cable lengths of the PMTs 15

¹³Assuming $v = \frac{2}{3}c$ in coax-cable for a length difference of 85 cm $\langle \Box \rangle \langle \Box \rangle \langle$

Christophe Mullesch

Time Response - Time Resolution

- For each source position, plot distribution of $t_{\text{mean}} := \frac{1}{2}(t_{\text{L}} + t_{\text{R}})$ with $t_{\text{L,R}}$ as defined on slide 10 and use Gauß * Exp fit-function
- Quantify time resolution of the strip as FWHM of the fit

э

(日)

Results on Photon Yield Results on Time Response

Time Resolution

Preliminary definition of time resolution as arithmetic mean of FWHM values:

$$\Rightarrow \mathsf{FWHM}_{\mathsf{Strip}} = (1.250 \pm 0.006) \; \mathsf{ns}$$

If one naively assumes a Gaussian distibution¹⁶ where $\sigma \approx FWHM/2.355$:

$$\Rightarrow \sigma_{\mathsf{Strip}} = (0.535 \pm 0.003)$$
 ns

Christophe Mullesch

æ

Conclusions and Outlook

- Uniformity of light yield heavily influenced by quality of coated PS strip
- Despite showing quite some defects from production, we were able to give an estimate of its time resolution
- Consistency checks for effective signal speed show that the choice of fit-function and interpretation of *t*₀ as signal arrival time are resonable
- Improvements to come:
 - Better coating procedure to remove necessity of machining after coating \rightarrow higher photon yield
 - More careful analysis of t_{mean} distribution to improve on time resolution
 - Take more source positions to improve on statistics

Thank you for your attention!

Bundesministerium für Bildung und Forschung

< □ > < □ > < □ > < □ > < □ > < □ > = □

▲ロト ▲園ト ★臣ト ★臣ト ―臣 ― のへで

Backup - New Strip

Christophe Mullesch

16 / 16

æ

Backup - Triggerbox Smearing

- Finite time resolution of triggerbox results in smearing of signal times
- From distribution of $\Delta t_{\text{Trigger}} := t_{\text{lower Trigger}} t_{\text{upper Trigger}}$, extract standard deviation $\sigma(\Delta t_{\text{Trigger}})$ from a Gaussian fit
- Assume both trigger scintillators have same resolution

$$\Rightarrow \sigma_{\text{lower Trigger}} = \sigma_{\text{upper Trigger}} = \frac{\sigma(\Delta t_{\text{Trigger}})}{\sqrt{2}} =: \sigma_{\text{Trigger}}$$

• We find
$$\sigma(\Delta t_{\mathsf{Trigger}}) = \mathcal{O}(0.3 \text{ ns})$$

• Since we have FWHM of order 1.2 ns, correcting for smearing only results in about 10% correction and is neglected in this presentation

イロト イポト イヨト イヨト

Backup - Triggerbox Smearing

• Fit-function used: Sum of two independant Gaussians to account for unfiltered background events without having to maually adjust fit-range

Backup - Unfiltered Background

Christophe Mullesch

16 / 16

æ

Backup - Source Position

Christophe Mullesch

16 / 16

æ

Time Resolution

