

-CheapCal-

Results with a first fibre-structured plastic scintillator prototype (Work package 2.4)

Ben Skodda

Master Student Humboldt-Universität zu Berlin

High-D Consortium meeting 9th - 10th February 2023

Overview General Idea Setup

Overview

- Generic R&D: plastic-scintillator based tracker and/or calorimeter using plastic scintillator plates structured with wavelength shifting fibres
- Close collaboration between:
 - Humboldt-Universität zu Berlin: Darkbox, Prototype testing, photon transport simulations, data analysis
 - Justus-Liebig Universität Gießen: scintillator characterization, SiPM array, SiPM amplifier, general support
 - Johannes Gutenberg-Universität Mainz: Link to SplitCal, general support
 - Technische Universität München: prototype preparation (milling, gluing), teflon block for fiber coupling to SiPM array, general support

▶ ▲ 글 ▶ _ 글 글

Overview General Idea Setup

General Idea

•Explore if a fibre-structured scintillator detector can be built with:

- 3D spatial information
- sufficient light yield in the individual fibres to obtain spatial and/or energy information
- affordable costs
- acceptable construction effort

Image: Image:

∃ ► < ∃ ►</p>

Overview General Idea Setup

Darkbox setup

Overview General Idea Setup

Detector setup

- One-sided fibre readout
- $\bullet~80\,\mathrm{cm}$ total fibre length
- $\bullet~45\,\mathrm{cm}$ distance between detector and SiPM array
- SiPM bias voltage (used): - 58.0 V
- SiPM array readout: - via Wavecatcher

Ben Skodda (Humboldt-Universität zu Berlin)

omega goove type

¹The CMS Outer Hadron Calorimeter- Acharva, Bannaje Sripathi et al - CMS-NOTE-2006-127 🗧 🕨 🗐 📼 🔊 🤇 🔿

Overview General Idea Setup

Trigger setup

- Triggerbox² built by:
 - U Hamburg
 - DESY Zeuthen
- Trigger box power supply: - 780 V
 - 287 mA
- Trigger with one PE threshold on both triggerbox channels and two additional fibres

Ben Skodda (Humboldt-Universität zu Berlin)

Overview General Idea Setup

Measurement setup

Calibration Measurements Reconstruction Results

Integration of charge signal

- Integration of the signal within the integration window (95 ns)
- Window is determined starting from the maximum
- Start of window: - 25 ns before maximum
- End of window:
 - $70\,\mathrm{ns}$ after maximum

Recap Position Reconstuction Calibration

Charge histograms for source above corresponding channel

nce on fiber their

integral in mVxns

Calibration Measurements Reconstruction Results

Conversion to photoelecton number (#PE)

- Darkcount measurement to estimate the gain of each channel
- Darkcount fit: Convolution of a Poisson distribution with a Gaussian distribution
- PE number = integral / gain
- Calibration of the light yield per fibre so that each fibre has the same mean light yield meas_{i,cali} = meas_i · total pe mean light yield.

 $meas_i = measured light yield in channel i$

light yield i = mean light yield of channel i

▶ < E ▶ E E</p>

Calibration Measurements Reconstruction Results

How single events can look like (Source position 1.25 cm)

Calibration Measurements Reconstruction Results

Position reconstruction algorithm

Method 1:

- Weighted mean
 - over all channels (16)

Method 2:

- Truncated weighted mean
 - weighted mean over 3 adjacent channels
 - selection via highest weight

• weight_i = meas_i ·
$$f_{cali} \cdot \sqrt{meas_i}$$

 $f_{cali} =$ calibration function

$$pos_{mean} = rac{\sum_{i=0}^{ch_{max}} weight_i \cdot pos_i}{\sum_{i=0}^{ch_{max}} weight_i}$$

$$\textit{pos}_{trunc} = rac{\sum_{i=i_{max}-1}^{i_{max}+1}\textit{weight}_i \cdot \textit{pos}_i}{\sum_{i=i_{max}-1}^{i_{max}+1}\textit{weight}_i}$$

$$i_{max} = \operatorname{argmax}_i \sum_{i=1}^{i+1} weight_i$$

$$f_{cali} = \frac{total \ pe \ mean}{light \ yield_i}$$

Calibration Measurements Reconstruction Results

Results for the truncated mean

Ben Skodda (Humboldt-Universität zu Berlin)

Calibration Measurements Reconstruction Results

Results

Calibration Measurements Reconstruction Results

Results

StdDev per channel 7 StdDev in [cm] w1 normal th=0pe 6 w1 normal th=2pe 5 w1 normal th=4pe 4 w1 truncated th=0pe 3 2 0<u></u> 5 10 15 20 25 Pos fibre in [cm]

Conclusion

- For a good spatial resolution, the absolute light yield needs to be increased
- Light yield will automatically increase by reading out both fibre sides and shortening the fibre length to the scintillator plate dimension
- Further studies on best configuration of reflectivity foil with respect to overall light yield and spatial resolution will be performed
- A first, very preliminary attempt with a neural net (not shown here), provides a significantly smaller bias and also better resolution than the mean and truncated mean estimators over the whole detector using only the raw calibration data!

Thank you for your attention

э

Fit function³ for SiPM photo-electron spectrum

$$\sum_{k} N_0 \cdot \frac{\mu(\mu + k \cdot \lambda)^{k-1} \cdot e^{-\mu + k \cdot \lambda}}{k!} \left(\frac{1}{\sqrt{2\pi \cdot \sigma_k}} e^{\frac{(x_i(k \cdot G + B))^2}{2\sigma_k^2}} \right)$$
$$\sigma_k = \sqrt{(\sigma_0)^2 + (k \cdot \sigma_1)^2}$$

- $\bullet~\mu=$ mean for generalized poisson distribution
- $N_0 = normalization$
- $\lambda = \text{Borel-branching parameter for prompt crosstalk probability}$
- $\bullet~\sigma_0=$ width of the pedestal peak
- $\sigma_1 =$ width of the first photoelectron peak
- $\bullet \ \mathsf{G} = \mathsf{gain}$
- B = pedestal value

³https://doi.org/10.1016/j.nima.2017.02.049

Charge spectrum ch 0 - 7

ъ

▶ ▲ 문 ▶ ▲ 문 ▶

Charge spectrum ch 8 - 15

-

イロト イヨト イヨト イヨト

Results truncated mean ch 0 - 7

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

Results truncated mean ch 8 - 15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

Results mean (th = 0 pe) ch 0 - 7

Ben Skodda (Humboldt-Universität zu Berlin)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

Results mean (th = 0 pe) ch 8 - 15

Results mean (th = 2 pe) ch 0 - 7

Results mean (th = 2 pe) ch 8 - 15

Results mean (th = 4 pe) ch 0 - 7

Results mean (th = 4 pe) ch 8 - 15

