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* Jetenergy resolution at future precision e*-e" colliders such as ILC must produce a di-
jet invariant mass resolution comparable to the weak vector bosons' decay width (~3%
in the range of jet energies 50-200 GeV) [1]

* Problem: typical jet energy resolution of ‘traditional’ calorimetry is much worse than

required at ILC. g:
L

* Solution: Particle Flow Calorimetry (PFC) [2]:

Charged :'
) . ) Hadrons
* measure momentum of charged particles (~60% of jet energy) using tracker;

og,. 1074
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* use highly granular calorimeters to measure remainder of energy of photons and
neural hadrons;
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* Use sophisticated clustering algorithms (e.g. Pandora Particle Flow Algorithm,
PPFA) to associate tracks to energy depositions in the highly granular calorimeters;

[1] M. A. Thomson. ‘Particle Flow Calorimetry and the PandoraPFA Algorithm’. NIMA, pp. 25-40. doi: 10.1016/j.nima.2009.09.009.
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AHCAL is a Fe-Sc highly granular calorimeter prototype designed for Particle Flow.
Calorimeter has ~22,000 individual SiPM-on-tile readout channels - highly granular;
AHCAL is a five dimensional, non-compensating calorimeter (e/rt = 1.25-1.4):

Five-dimensional calorimeter: measures energy density of hadron showers in space and time,
with up to 100 ps time resolution allowed by hardware for each active cell (3 x 3 x 0.3 cm3).

—  hadron showers develop with a dense EM core and sparse HAD halo »

AHCAL can exploit spatial development of hadron showers for shower separation;

— neutron fraction of hadron shower directly proportional to HAD fraction »

indirect energy depositions from neutrons delayed compared to first nuclear interaction by
hadron by 10-100 ns in steel >

—  Temporal development of hadron showers expected to vary significantly from event to
event~ likely that this information can be used to improve clustering

AHCAL can exploit temporal development of hadron showers for shower separation;

TAKE-HOME MESSAGE:

spatial & temporal energy density information

available from AHCAL may reduce confusion when clustering hadron showers.
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*  In Particle Flow Calorimetry, main contribution to resolution at jet energy > 40 GeV is confusion.

.
*  Confusion defined as ‘the energy misallocated between clusters of energy deposits in PFC’ [1]; ; - o
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. Can occur for two main reasons [1]:
* Insufficient sampling points in the calorimeter;

¢ lack of sophistication in the pattern recognition algorithms.
. -

¢ Study of [2] demonstrated excellent performance of graph neural network techniques applied to shower separation in a
simulated detector with varying sensor sizes;

i eiF

. However:
*  Study did not include track/timing information:
*  Track information critical for statistical re-clustering in Pandora PFA; E — E + E + E
*  Timing information expected to improve performance; unclear as to how much of an improvement is possible lET TRACK Y n
and how this manifests;

*  AHCAL has factor of 20 more sensors than calorimeter used in study; Studied in thiS presentation

*  Unknown if models are scalable to highly granular calorimeters;

TAKE HOME MESSAGE:

Machine learning may provide superior
pattern-recognition than classical methods>

otentially better clustering of energy deposits >
P ¥ 9 gy aep Failure to resolve

Reconstruct fragments as
neutral hadrons

better jet energy resolution » separate neutral hadrons

more precise measurements at future e*-e" colliders

[2] Shah Rukh Qasim et al. ‘Learning representations of irregular particle-detector geometry with distance-weighted graph networks'. In: The European Physical Journal C 79.7 (July 18, 2019), p. 608. doi:10.1140/epjc/s10052-019-7113-9.
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Given a charged and a synthetic neutral hadron shower observed simultaneously with AHCAL,

with their centres-of-gravity-separated by an average of ~8p,, (20 cm):

What is the distribution and scale of confusion energy in AHCAL that we can achieve with ML models?

How does the lateral/longitudinal distance and particle energy affect the amount of confusion?

Does 100 ps timing information/track information help in clustering? If so, then how?

Do the model learn clustering strategies that can be used to inform existing clustering techniques?

(1102
Simulation, 40 GeV n~ + B0 GeV Synthetic Neutral
Simulation, 40 GeV ™ + B0 GeV Synthetic Neutral Charged m~ Showar
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#* e —sn0z65ev Synthetic Neutral Shower
Centre of Gravity, Synthatic Neutral Shower 102 Esum — 83.607 GeV
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Three published neural network models are applied to shower separation
for AHCAL using synthetically produced two-shower charged/neutral
eventsin AHCAL: —  Synthetically displaced in a circle and ‘overlayed’ events rather than simulated
. two shower events required for comparison of models trained on data vs.
* PointNet [3]:

simulation;
— Uses affine transformation matrices to cluster;

Several important additional studies mentioned here and in backup slides:

* diagram explaining data synthesis method in the backup;
— Uses no local energy density information (i.e. each

active cell is independent, and not related to its

neighbours) —  Synthetic neutral hadron showers produced by removing the MIP-track that a

*  Dynamic Graph Convolutional Neural Network (DGCNN) [4]: charged hadron shower produces using a topological/energy cut:
— Uses successive k-nearest neighbour clustering in *  study found that this method is highly effective at producing 40 GeV
high dimensional space to learn a representation of synthetic neutral shower events. Method is explained in backup;

hadron showers using

" GravNet[2]: —  Average distance at which hadron showers are separated is important for
— Like DGCNN, but uses a low-dimensional clustering machine learning algorithms because ML algorithms bias to data, physical or
space to weight the significance of properties of the otherwise!

hadron shower; . . . . . .
* Average inter-shower distance (i.e. radius of the circle) was studied

- Designgd explicitly for use in particle shower and chosen to be around 80% of each shower is integrated radially
separation. from its centre-of-gravity.

*  This way, on average, there will always be some confusion energy for

Models output fraction of energy belonging to each shower in each active
the model to learn with.

cell;
Models were modified to have a similar flow of information to Pandora
PFA, and to support the inclusion of charged track and timing information.

[3] Charles R. Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Apr. 10, 2017. doi: 10 . 48550 / arXiv . 1612 . 00593.
[4] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. June 11, 2019. doi: 10.48550/arXiv. 1801.07829.
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All networks were implemented in PyTorch Lightning;

. 6 models were trained (colour coding shown):

. PointNet, DGCNN, GravNet'

2 102
. network method, without timing information; 10 Geauhct noTime
Fue Fractions, B Simulation, 85 GeV n~ + 5 GeV Neutral
*  network method, with timing information. T et s i
Esum = 63.446 GeV Synthetic Neutral Shower
Synthetic Neutral Shower Esum = 5.621 GeV

Training, validation and testing samples of were combined, randomly with replacement, from three Ear = 5370 5o
independent source samples of - hadron shower events in AHCAL simulated with Geant4, with
equal proportions of events for each possible combination of particle energies; ) »

= [

T k] T
- Particle Energy Range: 5-120 GeV, in steps of 5 GeV Sl E o RS

g = >3 =
- Training Sample: ~1,800,000 source events » 720,000 charged-neutral two-shower X o g

events; .
- Validation Sample: ~200,000 source events » 80,000 charged-neutral two-shower
events;
- Testing Sample:~2,000,000 source events » 800,000 charged-neutral two-shower events; 100
10°
- More information on applied cuts in backup slide
Hyperparameters were tuned using Optuna for 30 trials, with a maximum of ten epochs per trial,
using ADAM optimiser;
. Loss function from [2]:
Note:
t,p= true/predicted sensor energy fraction Minimum of each permutation of k is used, so no preference for the output channel

is learned;

2
AN Eta(pa — t
L= Z Zz ik (plk Zk) i, k = index of active cell/shower

A Z -/ E,L tz k E; = active cell energy of sensor i In testing, the combination of outputs showers with the lowest loss is used for
t testing, so ‘shower swapping'’ is not included as a source of confusion (see [3])

7/13




UH
i}"‘ Universitat Hamburg Results: Overall Distributions of Reconstructed vs True Shower Energy H I G H

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Simulation, Test Sample SImLS%tEOﬁNTiit_ﬁ?nn;ple Simulation, Test S.ample
PointNet, no Time 160 Z . 160 GravNet, no Time
160 . - KRN - e =
- LT — - LA - - —
10-3% — — 140 . '_ - . T ! 140 . _' - H N
5 140 ‘% g % AL, i ‘/’ L. % B> e g 10-3 %
54120 O 2010, 3 : S 5 3120 £ O
U — — Z > o 5 ) s 10-4 > 0 = L _
Z >100 104 2 & 100 - B Z >100 Y )
-2 @ s Jal - D - 107% &
B2 g o g2 s o @ D0 g ~ S
S & a a4 . .2 S& 2 o
2§ 60 10 2 o 8 o =2z 55 60 . S
c s = S g 40 :'- ._ . E g = — - H 10 =
56 2 g5 X : 32 « o 2
€7 20 o 8 £7 20 LR 10 8 g0 4 2o £
- o = 4 o .t ] 108 &
2 0 . (] . =
& 51 ., 8 3., g o
£ e £ Te, =
37 e, E.i" '.... i?‘ Oo...
I Qf——————— - [ b —————————— °°0...
5 e, . ++- 1 ", T L Rttt S IR YTy to
77 ., o b &3 RETTPOR + 2§ *tennggene®® It +.
E s ®eoqq0e®’ ‘% _5 w
£ 00 © & & = g
O O O &® o
A A U NS PRSP PP RS T 0 RS SO
Neutral Shower Energy [GeV] Neutral Shower Energy [GeV NN N Y
il oy ] Neutral Shower Energy [GeV]
What we expect: What is shown: What we learn:
. 2D histograms of the reconstructed vs. true shower . Red Reai L le dashed line:
* Intheideal case, the models ought to, energy, for each model without timing information. ed Region close to purple dashed line: . .
on average, reconstruct the same Showers are frequently reconstructed with energies close to the
shower energy as the original shower. Blue»Red : low->high probability density. original shower energy.
The bottom subplot shows the difference between the Asymmetric green region indicates skewness in distributions ;
mean reconstructed neutral and true neutral energy: . S .
. for separating any permutation of hadron showers in the result re.flectfed |.n the subplot, which indicates a linearly
testing data (5-120 GeV): decreasing bias in the shower > crosses 0 at 60 GeV
The purple dashed line indicates the agreement of the gG\?l\éNtatnd.GrlallvNet :alve S|gr)1|f|cantly smaller biases (max 5
reconstructed with the true shower energy €V, buttypically much lower

ranular Calorimeters Us
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Results: Overall Distributions of Confusion Energy

HIGH

Test Sample, All Energies

Test Sample, All Energies DGCNN

PointNet
. . DGCNN, no Time
: PointNet, no Time RMS90 = 3.014 GeV
014 RMS90 = 4.010 GeV DGCNN, + Time
[ PointNet, + Time 0.25 RMS90 = 2.028 GeV

— RMS90 = 4.188 GeV kol
= !
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3
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Elonfusion [GEV]
N confusion
Econfusr'on [GEV]
What we expect:

*  Networks should show a consistent confusion energy distribution between models;

*  Networks using time should improve resolution if the model is sufficiently sophisticated that
timing information can be exploited

What is shown:

The distributions of neutral confusion energy from each network, with RMS_ width , for separating any
permutation of hadron showers in the testing data (5-120 GeV):

* neural network, no timing information applied (green);
* neural network, with timing information applied (red).

Shower Separation for Highly Granular Calorimeters Using Machine Learning

Test Sample, All Energies
GravNet

0.30 e
£ "RM90 = 2,585 Gev
GravNet, + Time
0.25 RMS90 = 2.022 GeV
Reconstr - Tr
0.20 ecol ]S\; ucted ue
E} E, —EN
confusion sum sum

0.10

fres =

Probability Density [GeV~1]
o
=
w

o aN
1 1 if|E, — BN, <op
N, sample sample 0 otherwise

0.05

0.00

Er’:\{anfusr'on [GeV]

What we learn:
*  Noimprovement to resolution using timing information in PointNet.
*  Energy resolution both much better than PointNet and the improvement of time much more
significant using both DGCNN and GravNet
> 21% improvement using time with GravNet
- 35% improvement using time with DGCNN
*  Best RMS90 resolution achieved from GravNet using timing information 2 GeV
. Quote from DGCNN Paper:

”Instead of working on individual points like PointNet, we exploit local geometric
structures...”” » suggests importance of time to clustering is not in the absolute but instead

the relative value.
9/13
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AHCAL resolution
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Simulation, Test Sample

- EY
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GravNet, no Time

=

Simulation, Test Sample

100 GravNet, + Time
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=
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What we expect: What is shown:
. The difference between the particle energies . Left and Middle: Matrices of the fraction of events
should play a role in the amount of confusion: reconstructed within the AHCAL resolution for each
) ) ) possible permutation of hadron energies
. i.e. events with fewer active sensors are more . Blue > Red: more events reconstruted within the
likely to be incorrectly identified if there is resolution
another shower with more sensors.
* Right:

. Networks using time should improve resolution,

from previous results.

Difference between fraction with time and without time :

*  White: no improvement due to inclusion of time;

*  Red: additional percentage of events reconstructed

within the resolution.

Results: Fraction of Events reconstructed within

Simulation, Test Sample
GravNet

O R
Charged Particle Energy [GeV]

What we learn:

*  Confusion asymmetry:

20.0

g

9
i

Resolution (|

AHCAL Resolution in Simulation:

R =49%/JE ® 7%

Simulation, Test Sample

# Calorimeter Response

-
A
oo,

O N N N N
B [ L K K
Particle Energy [GeV]

. >90% of events reconstructed within calorimeter resolution where EN> E®

. Confusion most relevant where E®>EN

* Large redregion on the ratio plot:

Timing information is relevant for clustering where E® > EM
*  Fraction of events reconstructed within AHCAL resolution increases by up to 15 %

*  Results strongly suggest that:
*  track information is being exploited by the GravNet network;

*  timing information supplements clustering where track information is less reliable .

10/13
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N Q . Q N
Epamde > Epartlcle Eparticle > Eparticl.e
Track Position # Centre of Gravity Track Position = Centre of Gravity

[rack Position Centre
[Tiracks Jerack] of Gravity n
\ P [COGI, COG]]
. it ol @
N Q Al:
Al: “Darn! The track information
“Excellent! | can cluster is close to the centre of
arou_nd two axes, one of gravity! That only gives me
which is definitely my one axis for clustering!
=1 charged shower.
=1 Now I have to figure out

where the neural showeris... "
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HIGH-E

CASE:E, >E,

» Confusion energy distribution negatively skewed.
< Negative skew means more frequent underprediction of neutral
energy

CONCLUSION:
The charged shower is allocated confusion energy from the neutral
shower more frequently when E, >E_

Simulation, Test Sample
GravNet, no Time

(o))
o

I
o

| o
N
Skew(Econfusion) [GeV]

Neutral Particle Energy [GeV]

Reconstructed - True
EN B _EgN 20
confusion sum sum -4

What we expect:

*  If skewness is a function of particle energy, there
exists some bias for clustering the hadron
showers that is most effective.

What we learn:

What is shown:
*  Skewness of neutral confusion energy
distribution:
*  Blue: negative skewness;
*  White: no skewness;
*  Red: positive skewness;

S &

P
Charged Particle Energy [GeV]

QO
S

Consistently across networks, with or without time, the
algorithms more frequently donate energy from the
shower with more energy to the one with less.

Neutral Particle Energy [GeV]

Note, from [1], on Pandora PFA:
“by design the initial clustering stage errs on the side of
splitting up true clusters rather than merging energy

deposits”

Neural networks consistently learn the same strategy.

N
o

Shower Separation for Highly Granular Calorimeters Using Machine Learning

CASE:E,>E,

< Confusion energy distribution positively skewed.
> Positive skew means more frequent overprediction of neutral
energy

CONCLUSION:
The neutral shower is allocated confusion energy from the charged
shower more frequently when E_>E

Simulation, Test Sample
DGCNN, + Time
|

Simulation, Test Sample
PointNet, no Time

S 100

3

o
O = =
=2 =
sy 3
22 60 0 ¢
ST =8
g s g
Ef= z
gg w -2%

3

4

e e & P e e

Charged Particle Energy [GeV] Charged Particle Energy [GeV]
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+  Shower Separation is critical to the performance of Particle Flow Calorimetery;
«  Special neural networks can be used to reconstruct hadron showers where more than one particle is present in the event;

+  Several neural network models from literature were implemented for shower separation, exploit the spatial and temporal energy density
of the highly-granular AHCAL detector, to study their properties;

+  The following observations were made:
— Graph neural networks produce superior results to point-based model, and can exploit timing information;
— Neural networks are able to exploit topological and statistical clustering in the same model;

— Cases where Ey > Eg: more than 90% of events reconstructed within the calorimeter resolution.

— Cases where Eg > Ey: up to 15% more events are reconstructed within the calorimeter resolution if 100 ps timing resolution is
available;

— All neural networks prefer to separate clusters of energy than merge them, similarly to Pandora PFA.

. MAIN RESULTS:
— Astrong case exists for the AHCAL temporal calorimeter- improvement for Eg > E

— Neural networks learn similar clustering strategies to Pandora PFA

_ Shower Separation for Highly Granular Calorimeters Using Machine Learning 13/13
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- Color Axis:
Charged nm~ Shower
® Esym = 94.687 GeV
* Energy of cell, in muon-calibrated ‘minimum

ionising particle’ (MIP) units;

Z Axis:
*  Layers of absorber v * 22,000 cells altogether;
! Q
active material and 2 10' — ]
sensors (cells); = S * Sum of all the cell energies > reconstructed
N < energy of hadron;
* 38active layers. &
10°

X-Y Axes: Additionally:

* Timing information for each cell in nanoseconds;

*  Matrices of sensors (cells);
* Notshownin this event display.

* 24 x24 cells per layer

14/13
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A

Charged n~ Shower Centre of Gravity ehit
Esum = 94.687 GeV [CoG;, CoGy] — ~

[
2 1
k) 10 T A
Py =
S
W Ky
Jnit
MIP Track Kg
100 )
Lt
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Random Random VETO
Sample Displacement X VETO X

Combine
NO NO Events

>95 % of Eg,,
contained?

\
N\ E;ut = Ehlt + Egt
Gaus(u = 0; 0 =100 ps) if simulation
th, = mm(thlt, tmt) { (u ps) .
0(0) if data
Combined
= (Rﬁ?! (EQ el ] + REP(E,) ) Cell fi = ETht
particle particle hit
\ 128 J
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Simulation, Simulation,
107 Training Sample, 40 GeV Training Sample, 40 GeV Simulation,
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Q 1000 / 8 o 60.0% (Ecum)
o y / = ‘e . o 70.0% (Esum)
E,lo _ II 56 ‘.---a.....-...'..
g o 800 } & < e
'“&TL'Q 3 3 ! = 4y ¢ e S
~ 10 ’E 600 r', P IR RS haae bl
. ® o0 00 * . It .
u_Ja r' 2 ."""':':::o:::o:::.
_5 - 1
107 . 400( L 0
3 ! iT 1.05
I IS
o 200+ i) .
1 | B 100 mmm—mm RS S T
" ——- Cumulative Integral of Spline =] °e !
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hit LPM .
! Rhit [pm] Particle Energy [GeV]
Step 2: Step 3:

Step 1:

*  Calculate differential energy deposited per
unit area in a circle of radius R, around the

centre-of-gravity;

*  Fit the distribution with a cubic spline.

nforH

Calculate cumulative integral of the differential
energy loss by integrating spline.

This gives the average cumulative energy per
additional unit radius of the circle. It saturates at the

average energy loss of the shower.

Repeat this procedure for each particle energy in the
sample.

Calculate radial distance at which 80% of the hadron
shower energy is deposited (orange line)

In simulation, this was found to empirically follow the
function (within 1-2 %):

Y%
Ri?t (Eparﬁcle) =dRr + bR . log Eparﬁcle +CR - Eparﬁcle
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What we expect:

As the distance between hadron showers increases, so too
should the systematic bias and statistical uncertainty the
reconstructed energy, as a percentage of the shower energy,
decrease.

The proportion of confusion should decrease with particle
energy (proportionally less confusion energy)

The inclusion of time should reduce the bias and uncertainty;

What is shown:

Systematic bias (mean) and statistical uncertainty (std.
deviation) in percent of the reconstructed energy vs. the radial
centres-of-gravities of the charged and neutral hadron
showers, in Moliere radii

The inclusion of time should reduce the bias and uncertainty if
it is useful for clustering.

What we learn:

Systematic bias and statistical uncertainty decrease
approximately exponentially with increasing separation
distance.

For all energies shown, timing information reduces the bias
and uncertainty, particularly for distances of R >2.5 p,,

Energy as a function of Radial Shower Distance

Systematic Bias
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Results: Systematic Bias and Statistical Uncertainty on Reconstructed

Systematic Bias
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Simulation, Test Sample, 80 GeV
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Charged m~ Shower
®  Esum = 94.687 GeV

+  Physics list: QGSB_BERT_HP

+  Particle: 71 -
> Joo
- Cuts: E _
—  + Single track, with position ‘inside” calorimeter: 1 < It /Jraa < 24 h;é %
- + PID MIP Cut: Fputike < 0.5% E
—  Atleast 50 active cells remaining after MIP Track Cut
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What is shown:
Distributions of uncompensated calorimeter response, before and after tail-catcher cut, at 20 GeV and 80 GeV.

What we learn:
Effect of leakage reduced by application of tail-catcher cut at high particle momentum.

_ Shower Separation for Highly Granular Calorimeters Using Machine Learning
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