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Particle Flow Calorimetry

● Jet energy resolution at future precision e+-e- colliders such as ILC must produce a di-
jet invariant mass resolution comparable to the weak vector bosons' decay width (~3% 
in the range of jet energies 50-200 GeV) [1]

● Problem:  typical jet energy resolution of ‘traditional’ calorimetry is much worse than 
required at ILC.

● Solution: Particle Flow Calorimetry (PFC) [2]:

● measure momentum of charged particles (~60% of jet energy) using tracker;

 

● use highly granular calorimeters  to measure remainder of energy of photons and 
neural hadrons;

● Use sophisticated clustering algorithms (e.g. Pandora Particle Flow Algorithm, 
PPFA) to associate tracks to energy depositions in the highly granular calorimeters;   

[1] M. A. Thomson. ‘Particle Flow Calorimetry and the PandoraPFA Algorithm’. NIMA, pp. 25–40. doi: 10.1016/j.nima.2009.09.009.
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CALICE Analogue Hadronic CALorimeter (AHCAL)

● AHCAL is a Fe-Sc highly granular calorimeter prototype designed for Particle Flow.

● Calorimeter has ~22,000 individual SiPM-on-tile readout channels → highly granular;

● AHCAL is a five dimensional, non-compensating calorimeter (e/π = 1.25-1.4):

● Five-dimensional calorimeter:  measures energy density of hadron showers in space and time, 
with up to  100 ps time resolution allowed by hardware for each active cell (3 x 3 x 0.3 cm3). 

– hadron showers develop with a dense EM core and sparse HAD halo → 

AHCAL can exploit spatial development of hadron showers for shower separation;

– neutron fraction of hadron shower directly proportional to HAD fraction →

indirect energy depositions from neutrons delayed  compared to first nuclear interaction by 
hadron by 10-100 ns in steel →

– Temporal development of hadron showers expected to vary significantly from event to 
event→ likely that this information  can be used to improve clustering

–  AHCAL can exploit temporal development of hadron showers for shower separation;

             TAKE-HOME MESSAGE:
spatial & temporal energy density information 

available from AHCAL may reduce confusion when clustering hadron showers. 
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Machine Learning for Energy Clustering in Particle Flow

[2] Shah Rukh Qasim et al. ‘Learning representations of irregular particle-detector geometry with distance-weighted graph networks’. In: The European Physical Journal C 79.7 (July 18, 2019), p. 608. doi:10.1140/epjc/s10052-019-7113-9.

● In Particle Flow Calorimetry, main contribution to resolution at  jet energy > 40 GeV is confusion. 

● Confusion defined as ‘the energy misallocated between clusters of energy deposits in PFC’ [1];

● Can occur for two main reasons [1]:
● Insufficient sampling points in the calorimeter;

● lack of sophistication in the pattern recognition algorithms.

● Study of  [2] demonstrated excellent performance of graph neural network techniques applied to shower separation in a 
simulated detector with varying sensor sizes; 

● However: 
● Study did not include track/timing information:

● Track information critical for statistical re-clustering in Pandora PFA;
● Timing information expected to improve performance; unclear as to how much of an improvement is possible 

and how this manifests;

● AHCAL has factor of 20 more sensors than calorimeter used in study;
● Unknown if models are scalable to highly granular calorimeters; 

TAKE HOME MESSAGE:

Machine learning may provide superior
 pattern-recognition than classical methods→

potentially better clustering of energy deposits → 

 better jet energy resolution → 

more precise measurements at future e+-e- colliders

Studied in this presentation
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Problem Statement
Given a charged and a synthetic neutral hadron shower observed   simultaneously with AHCAL, 

with their centres-of-gravity-separated  by an average of ~8ρM (20 cm) : 

● What is the distribution and scale of confusion energy in AHCAL that we can achieve with ML models?
 

● How does the lateral/longitudinal distance and particle energy affect the amount of confusion? 

● Does  100 ps timing information/track information help in clustering? If so, then how?

● Do the model learn clustering strategies that can be used to inform existing clustering techniques? 

WHAT WE HAVE:

Hadron Shower
 Event Information

Cell indices, 
Energy,

Timestamp,
Track Position,

Track Momentum

WHAT WE WANT:

Fractions of energy 
belonging to each

 shower, for each cell.



6/6/13Shower Separation for Highly Granular Calorimeters Using Machine Learning 

Shower Separation Models

● Three published neural network models are applied to shower separation 
for AHCAL using synthetically produced two-shower charged/neutral 
events in AHCAL:

• PointNet [3]:
– Uses affine transformation matrices to cluster ;  
– Uses no local energy density information (i.e. each 

active cell is independent, and not related to its 
neighbours)

• Dynamic Graph Convolutional Neural Network (DGCNN) [4]:
– Uses successive k-nearest neighbour clustering in 

high dimensional space to learn a representation of 
hadron showers using  

• GravNet [2]:
– Like DGCNN, but uses a low-dimensional clustering 

space to weight the significance of properties of the 
hadron shower;

– Designed explicitly for use in particle shower 
separation. 

  
● Models output fraction of energy belonging to each shower in each active 

cell; 
● Models were modified to have a similar flow of information to Pandora 

PFA, and to support the inclusion of charged track and timing information.

[3]  Charles R. Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Apr. 10, 2017. doi: 10 . 48550 / arXiv . 1612 . 00593. 

● Several important additional studies mentioned here and in backup slides:

– Synthetically displaced in a circle and ‘overlayed’ events rather than simulated 
two shower events required for comparison of models trained on data vs. 
simulation;

• diagram explaining data synthesis method in the backup;

– Synthetic neutral hadron showers produced by removing the MIP-track that a 
charged hadron shower produces  using a topological/energy cut: 

• study found that this method is highly effective at producing 40 GeV 
synthetic neutral shower events. Method is explained in backup;  

– Average distance at which hadron showers are separated is important for 
machine learning algorithms because ML algorithms bias to data, physical or 
otherwise! 

• Average inter-shower distance  (i.e. radius of the circle) was studied 
and chosen to be around 80% of each shower is integrated  radially 
from its centre-of-gravity.

• This way, on average, there will always be some confusion energy for 
the model to learn with. 

 

[4]  Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. June 11, 2019. doi: 10.48550/arXiv. 1801.07829.
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Training Details

● All networks were implemented in PyTorch Lightning;

● 6 models were trained (colour coding shown): 

• PointNet, DGCNN, GravNet’

• network method, without timing information;

• network method, with timing information. 

● Training, validation and testing samples of were combined, randomly with replacement, from three 
independent source samples of π- hadron shower events in AHCAL simulated with Geant4, with 
equal proportions of events for each possible combination of particle energies; 

– Particle Energy Range: 5-120 GeV, in steps of 5 GeV

– Training Sample:   ~1,800,000 source events  →    720,000 charged-neutral two-shower 
events;  

– Validation Sample:  ~200,000  source events  →    80,000 charged-neutral two-shower 
events; 

– Testing Sample:~2,000,000 source events →    800,000 charged-neutral two-shower events;

– More information on applied cuts in backup slide

● Hyperparameters were tuned using Optuna for 30 trials, with a maximum of ten epochs per trial, 
using ADAM optimiser;

● Loss function from [2]: 

Note: 
Minimum of each permutation of k is used, so no preference for the output channel 
is learned;

In testing, the combination of outputs showers with the lowest loss is used for 
testing, so ‘shower swapping’ is not included as a source of confusion (see [3])
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Results: Overall Distributions of Reconstructed vs True Shower Energy 

What we expect:

● In the ideal case, the models ought to, 
on average, reconstruct the same 
shower energy as the original shower.

What we learn:

● Red Region close to purple dashed line:  
Showers are frequently reconstructed with energies close to the 
original shower energy.

● Asymmetric green region indicates skewness in distributions  ;

● result reflected in the subplot, which indicates a linearly 
decreasing bias in the shower  →  crosses 0 at 60 GeV

● DGCNN and GravNet have significantly smaller biases (max 5 
GeV, but typically much lower )
 

   

What is shown:
● 2D histograms of the reconstructed vs. true shower 

energy, for each model without timing information.

Blue→Red : low→high probability density.

The bottom subplot shows the difference between the 
mean reconstructed neutral and true neutral energy: 

● for separating any permutation of hadron showers in the 
testing data (5-120 GeV):

The purple dashed line indicates  the agreement of the 
reconstructed with the true shower energy
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Results: Overall Distributions of Confusion Energy

What we learn:

● No improvement to resolution using timing information in PointNet.

● Energy resolution both much better than PointNet and the improvement of time much more 
significant using both DGCNN and GravNet 

→  21% improvement using time with GravNet 
→  35% improvement  using time with DGCNN

● Best RMS90  resolution achieved from GravNet  using timing information→ 2 GeV 

●  Quote from DGCNN Paper:
‘”Instead of working on individual points like PointNet, we exploit local geometric 
structures…’” → suggests importance of time to clustering is not in the absolute but instead 
the relative value. 

What we expect:

● Networks should show a consistent confusion energy distribution between models;

● Networks using time should  improve resolution if the model is sufficiently sophisticated  that 
timing information can be exploited

What is shown:

The distributions of neutral confusion energy from each network, with RMS90 width , for separating any 
permutation of hadron showers in the testing data (5-120 GeV):

● neural network, no timing information applied  (green);
● neural network, with timing information applied (red).

Reconstructed    -   True
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Results: Fraction of Events reconstructed within 
AHCAL resolution

What we expect:
● The difference between the particle energies 

should play a role in the amount of confusion:

● i.e. events with fewer active sensors are more 
likely to be incorrectly identified if there is 
another shower with more sensors. 

● Networks using time should improve resolution, 
from previous results.

What we learn:

● Confusion asymmetry:
● >90% of events reconstructed within calorimeter resolution where EN > EQ  
● Confusion most relevant where   EQ > EN

              

● Large  red region on the ratio plot: 
Timing information is relevant  for clustering where EQ > EN.

● Fraction of events reconstructed within AHCAL resolution increases by up to 15 %

● Results strongly suggest that:
● track information is being exploited by the GravNet network;
● timing information supplements clustering where track information is less reliable . 

   

What is shown:
● Left and Middle:  Matrices of the fraction of events 

reconstructed within the AHCAL resolution  for each 
possible permutation of hadron energies
● Blue → Red: more events reconstruted within the 

resolution

● Right:
Difference between fraction with time and without time :
● White: no improvement due to inclusion of time;
● Red:  additional percentage of events reconstructed 

within the resolution.

AHCAL Resolution in Simulation:
 

            R  = 49%/√E  7%⊕

gray
x
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AI: 
“Excellent! I can cluster 
around two axes, one of 

which is definitely my 
charged shower.”

AI: 
“Darn! The track information 

is close to the centre of 
gravity! That only gives me 

one axis for clustering!

 Now I have to figure out 
where the neural shower is... “

Results: Visual Hypothesis for Clustering Asymmetry 
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CASE: EQ > EN

→ Confusion energy distribution positively skewed. 
→ Positive skew means more frequent overprediction of neutral 
energy

CONCLUSION: 
The neutral shower is allocated confusion energy from the charged 
shower more frequently when  EQ > EN

CASE: EN > EQ

→ Confusion energy distribution negatively skewed. 
→ Negative skew means more frequent underprediction of neutral 
energy

CONCLUSION: 
The charged shower is allocated confusion energy from the neutral 
shower more frequently when  EN > EQ

What we expect:
● If skewness is a function of particle energy, there 

exists some bias for clustering the hadron 
showers that is most effective. 

What we learn:
● Consistently across networks, with or without time, the 

algorithms more frequently donate energy from the 
shower with more energy to the one with less.

● Note, from [1], on Pandora PFA:
sign t
”by design the initial clustering stage errs on the side of 
splitting up true clusters rather than merging energy 
deposits”

● Neural networks consistently learn the same strategy.
  

What is shown:
● Skewness of neutral confusion energy 

distribution:
● Blue:   negative skewness;
● White: no skewness;
● Red: positive skewness;

Results: Skewness of Confusion As a Function of Particle Energy

Reconstructed    -   True
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Conclusion

● Shower Separation is critical  to the performance of Particle Flow Calorimetery;

● Special neural networks can be used to reconstruct hadron showers where more than one particle is present in the event;

● Several neural network models from literature were implemented for shower separation,  exploit the spatial and temporal energy density 
of the highly-granular AHCAL detector, to study their properties; 

● The following observations were made:
– Graph neural networks produce superior results to point-based model, and can exploit timing information;
– Neural networks are able to exploit topological and statistical clustering in the same model;

– Cases where EN > EQ: more than 90% of events reconstructed within the calorimeter resolution.  

– Cases where EQ > EN: up to 15% more events are reconstructed within the calorimeter resolution if 100 ps timing resolution is 
available;

– All neural networks prefer to separate clusters of energy than merge them, similarly to Pandora PFA.

● MAIN RESULTS: 
– A strong case exists for the AHCAL temporal calorimeter→ improvement for EQ > EN

– Neural networks learn similar clustering strategies to Pandora PFA 
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What constitutes an ‘event’ for AHCAL?”

Z Axis:

● Layers of absorber, 
active material and 
sensors (cells);

● 38 active layers.

X-Y Axes:

● Matrices of sensors (cells);

● 24 x 24 cells per layer

Color Axis:

● Energy of cell, in muon-calibrated ‘minimum 
ionising particle’ (MIP) units;

● 22,000 cells altogether;

● Sum of all the cell energies →  reconstructed 
energy of hadron;

Additionally:

● Timing information for each cell in nanoseconds; 

● Not shown in this event display. 
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Backup: ‘Natural’ Shower Coordinate System
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Synthetic Shower Overlay Algorithm
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Shower Distance Procedure

Step 1:

● Calculate differential energy deposited per 
unit area in a circle of radius Rhit around the 
centre-of-gravity;

● Fit the distribution with a cubic spline.

Step 2:

● Calculate cumulative integral of the differential 
energy loss by integrating spline. 

● This gives the average cumulative energy per 
additional unit radius of the circle. It saturates at the 
average energy loss of the shower. 

● Repeat this procedure for each particle energy in the 
sample. 

Step 3:

● Calculate radial distance at which 80% of the hadron 
shower energy is deposited (orange line)

● In simulation, this was found to empirically follow the 
function (within 1-2 %): 
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Results: Systematic Bias and Statistical Uncertainty on Reconstructed
Energy as a function of Radial Shower Distance 

What we expect:
● As the distance between hadron showers increases, so too 

should the systematic bias and statistical uncertainty the 
reconstructed energy, as a percentage of the shower energy, 
decrease. 

● The proportion of confusion should decrease with particle 
energy (proportionally less confusion energy)

● The inclusion of time should reduce the bias and uncertainty;

What is shown:

● Systematic bias (mean) and statistical uncertainty (std. 
deviation) in percent of the reconstructed energy vs. the radial 
centres-of-gravities of the charged and neutral hadron 
showers, in Moliere radii

● The inclusion of time should reduce the bias and uncertainty if 
it is useful for clustering. 

What we learn:

● Systematic bias and statistical uncertainty decrease 
approximately exponentially with increasing separation 
distance. 

● For all energies shown, timing information reduces the bias 
and uncertainty, particularly for distances of R > 2.5 ρM  
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Backup: Simulation Details

● Physics list: QGSB_BERT_HP
● Particle:
●  Cuts:

– + Single track, with position ‘inside’ calorimeter: 
–  + PID MIP Cut:
– At least 50 active cells remaining after MIP Track Cut
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Backup: TCMT Cut

What is shown:
Distributions of uncompensated calorimeter response, before and after tail-catcher cut, at 20 GeV and 80 GeV.

What we learn:
Effect of leakage reduced by application of tail-catcher cut at high particle momentum.
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