Boron removal effect in silicon sensors

Chuan Liao^a, E. Fretwurst^a, E. Garutti^a, J.Schwandt^a, A. Himmerlich^b, M. Moll^b, Y. Gurimskaya^b, I. Pintilie^c, L. Makarenko^d

^aInstitut für Experimentalphysik, Universität Hamburg

^bEuropean Organization for Nuclear Research (CERN), Geneva, Switzerland

°National Institute of Materials Physics, Bucharest, Romania

^dBelorussian State University, Minks, Belarus

High-D

Feb 10, 2023

I. Motivation

II. Background

III. Experimental details

IV. Results

V. Summary

Radiation damage of LGADs (Low Gain Avalanche Diodes)

Universität Hamburg Bulk damage in p-type silicon sensor

UO

Radia

ot

DER FORSCHUNG | DER LEHRE | DER BILDUNG

UΗ

Schematic of radiation damage in p-type silicon sensor

I: Lattice Silicon atom (Si_s) was knocked out by incident particle and Si_s got recoil energy and turns to interstitial silicon (Si_i)

II: Si, diffusion in the bulk and impact on Lattice Boron atom (B_s)

III: B_s was knocked out Si_i and turns to interstitial Boron (B_i) and finally captured by interstitial Oxygen (O_i)

Ph.D works:

• 23 GeV Protons $(4.3 \times 10^{13} \text{ n}_{eq}/\text{cm}^2, \text{ N}_{eff} = 10^{12} \sim 10^{15} \text{ cm}^{-3} - \text{Doping dependent})$: Comparing the decreases of N_{eff} with defect formation;

Current related damage parameter α (Hamburg model, cluster related defect); Annealing behavior

- 5.5 MeV electrons (10^{13} ~ 10^{14} n_{eq}/cm² Fluence dependent, N_{eff} = 10^{15} cm⁻³):
 - ${\sf N}_{{\rm eff}}, \alpha$ and annealing behavior comparing with proton irradiation;
- , Comparing the Cz ([C] $\approx 2 \times 10^{15}$ cm⁻³) and EPI ([C] $\approx 3 \times 10^{16}$ cm⁻³) diodes
- ${}^{60}Co \gamma$, 1.3 MeV Photon (FZ silicon, point defects)

The observed results from both literature and our works(depend on initial doping, type of radiation and fluence):

10/02/22

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Expitaxial silicon (CIS and CERN	J)
----------------------------------	----

	label	EPI50P_01_DS_73	EPI50P_06_DS_71	EPI50P_09_DS_73	EPI50P_12_DS_74	
Diodes with different initial doping concentration	Initial doping (cm ⁻³)/Resistivity (Ωcm)	1.4e15/10	2.0e14/50	4.5e13/250	6.2e12/2000	
	irradiated (23GeV Proton)	Φ_{eq} =4.28e13 cm ⁻²				
	Area	0.06927 cm^2				
	Thickness	50 μm				
	Carbon concentration	$\sim 2e15 \text{ cm}^{-3}$				

label	EPI50P_06_DS_71	EPI50P_06_DS_73	EPI50P_06_DS_74	
Resistivity	50 Ωcm			
irradiated	Φ_{eq} =4.28E13 cm ⁻²	Φ_{eq} =2.5E13 cm ⁻²	$\Phi_{\rm eq} = 2.49 {\rm E13} {\rm ~cm}^{-2}$	
Area	0.06927 cm^2			
Thickness	50 μm			
Carbon concentration	~ 2e15 cm ⁻³			

Diodes irradiated with

different fluence

Diodes Information (5.5 MeV electrons)

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg

Minsk

Label	EPI50P_06_DS_3	EPI50P_06_DS_7	EPI50P_06_DS_9	CZ300P_06_DS_3	CZ300P_06_DS_7()	
Initial doping/resistivity	Expitaxial silicon, P-type 1.15e15 cm ⁻³ / \sim 10 Ω cm			Cz silicon, P-type 1.0)5e15 cm ⁻³ / \sim 10 Ω cm	
Irradiation (6 MeV electrons)	1e15 e/cm² (3.98e13 n _{eq} /cm²)	4e15 e/cm ² (1.59e14 n _{eq} /cm ²)	6e15 e/cm² (2.39e14 n _{eq} /cm²)	1e15 e/cm² (3.98e13 n _{eq} /cm²)	4e15 e/cm ² (1.59e14 n _{eq} /cm ²)	
Area	0.0621 cm ²			0.029 cm ²		
Thickness	50 μm			400 μm		
Carbon concentration	~ 2e15 cm ⁻³			~ 3e15 cm ⁻³		

Universität Hamburg Diodes Information (⁶⁰Co γ-ray)

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Details of samples investigated (high resistivity ~3 kΩcm p-type FZ material from Hamamatsu)

Initial doping, bulk	$\sim 3.5 \times 10^{12} \text{ cm}^{-3}$			
⁶⁰ Co-y irradiation	94±0.96 kGy	189±3.9 kGy	924±27 kGy	1860±56 kGy
Area	0.25 cm ²			
Thickness	150 μm			
Carbon concentration	~1e15 cm ⁻³			

Experimental detail (I-V/C-V)

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg

UН

10/02/22

Chuan Liao - Boron removal effect in silicon sensors

HIGH

Universität Hamburg Results of protons irradiation (Main) HIGH-

DER FORSCHUNG | DER LEHRE | DER BILDUNG

UН

- $[B_iO_i]$ and N_{eff} extracted from TSC and C-V measurement
- If $T_{ann} > 150 \text{ °C}$, $[B_iO_i]$ decrease
- Higher initial doping concentration leads to higher B_iO_i introduction rate after the same fluence value. But the increase is not linear
- $\Delta N_{eff} \approx 2 \times \Delta N_t (B_i O_i)$ as expected from $B_s(-) \rightarrow B_i O_i (+)$

Introduction rate:

 $g(B_i O_i) = \frac{\Delta[B_i O_i]}{\Delta \phi}$

UH H Universität Hamburg Results of electron irradiation (Main) HIGH-

DER FORSCHUNG | DER LEHRE | DER BILDUNG

- $\Delta N_{eff} \approx 2 \times \Delta N_t (B_i O_i)$ as expected from $B_s(-) \rightarrow B_i O_i (+)$
- A higher peak of B_iO_i appeared on EPI-diodes compared to Cz-diodes at the same fluence value, and the reverse for C_iO_i

- TSC spectra ($T_{fill} \approx 30$ K, $V_{bias} = 300$ V, $I_{fill} \approx 1$ mA) for p-stop diode irradiation by ${}^{60}Co-\gamma$ with 1864 kGy. $T_{ann} = 100 \rightarrow 200 \, {}^{\circ}C$ (left) and $T_{ann} = 200 \rightarrow 300 \, {}^{\circ}C$ (right)
- H40K is eliminated by annealing when $T_{ann} > 100$ °C
- B_iO_i is stable with T_{ann} until 150°C, then decreases with T_{ann} disappears at T_{ann} = 200°C meanwhile peak 1 increases in this range. When T_{ann} > 200°C, peak 1 decreases and peak 2 increases.

10/02/22

I. Results for diodes irradiated by 23 GeV protons:

- The X-defect was discovered
- Development of gB_iO_i with [B_s] increasing
- $[B_iO_i]$ decreasing, when $T_{ann} > 150 \text{ °C}$

II. Results for diodes irradiated by 5.5 MeV electrons:

- Less cluster defect induced by 5.5 MeV electrons compared to 23 GeV protons for the same n_{eq} fluence
- Higher g(BiOi) for 5.5 MeV electrons compared to 23 GeV protons for the same n_{eq} fluence
- Less g(BiOi) on Cz silicon after 5.5 MeV electrons irradiation compare to EPI silicon
- Developed the TSC methods for Highly doping silicon diodes

III. Results for diodes irradiated by ⁶⁰Co γ -ray:

• Annealing behaviors of B_iO_i

Back up

literature

[1] P. M. Mooney., et al. "Defect energy levels in boron-doped silicon irradiated with 1-MeV electrons," Phys. Rev. B, vol. 15, no. 8, pp. 3836–3843, 1977.

[2] Liao, C., et al. "The Boron–Oxygen (B_iO_i) Defect Complex Induced by Irradiation With 23 GeV Protons in p-Type Epitaxial Silicon Diodes." IEEE Transactions on Nuclear Science 69.3 (2022): 576-586.

[3] M. Moll, "Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties," Ph.D. dissertation, Dept. Phys., Univ. Hamburg, Hamburg, Germany, 1999

[4] Pintilie, Ioana, et al. "Radiation-induced point-and cluster-related defects with strong impact on damage properties of silicon detectors." Nucl. Instrum. Methods Phys. Res. A, 611.1 (2009): 52-68.

[7] H. Feick "Radiation tolerance of silicon particle detectors for high-energy physics experiments," Ph.D. dissertation, Dept. Phys., Univ. Hamburg, Hamburg, Germany, 1997 [9] Wodean project. Summary Report, 2010

