Universität Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

> CAUTION WORK IN PROGRESS

Characterisation of LGADs at DESY test beam

High-D Consortium Meeting 09 Feb 2023

Annika Vauth

LGAD projects: Timing layer

HEP detector R&D: dedicated beam tests for conceptual / technical design, calibrations, commissioning, ...

ightarrow DESY II Testbeam Faciliy

Integral part of test beam infrastructure: Beam Telescopes Current EUDET-type telescopes: Six planes of MIMOSA26 sensors Intrinsic sensor resolution: $\sigma \cong 3 \,\mu m$

Rolling shutter readout, readout cycle 115 µs

Add faster device for time stamping the tracks \rightarrow LGAD timing layer

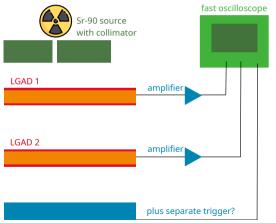
LGAD prototypes expected:

- TI-LGADs from FBK(*)
- i-LGADs from CMN

(*)received first test structures FBK, trench isolated: test structures 45 µm substrate, trench depth "D2", no carbon

Samples from three different wafers (low/high diffusion, different trench processes)

> The "big ones": 4 mm x 4 mm, pixels 2x2 (1300 μ m x 1300 μ m) all single trench, 18 with (6 without) gain


Time resolution measurement

One way to measure time resolution:

- Two LGADs (parallel to each other)
- Particle source

(e.g. beta source with collimator)

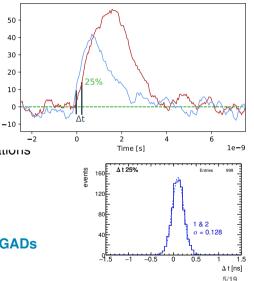
- Each detector connected to an amplifier
- Signals fed into oscilloscope, triggers on signal in both
- Measure difference in arrival time Δt

Beta setup - analysis

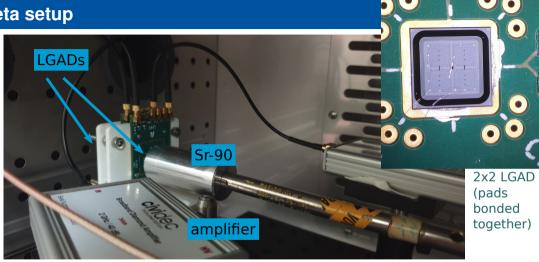
- Measure waveforms of two LGADs
- Apply constant-fraction-discriminator
- Determine time difference Δt
- Fit Δt distribution for many events
- Assuming no correlation:

$$\sigma_{\text{system}-1-2}^2 = \sigma_1^2 + \sigma_2^2$$

Use three LGADs measured in three combinations


Voltage [mV]

$$\sigma_1^2 = \frac{1}{2} \left(\sigma_{12}^2 + \sigma_{13}^2 - \sigma_{23}^2 \right)$$


(and equivalent for the other two)

ightarrow can determine time resolution of all three LGADs

```
Universität Hamburg
De rossciuwe | De Linket | Det Billowe A. Vauth | 3<sup>rd</sup> High-D meeting, 9.2.2023 | LGAD testbeam
```


Beta setup

For more details: see report at last High-D meeting

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam

Beta setup: some signals

First tests with beta setup Challenge: low trigger rate 1-2 hours for 1000 events

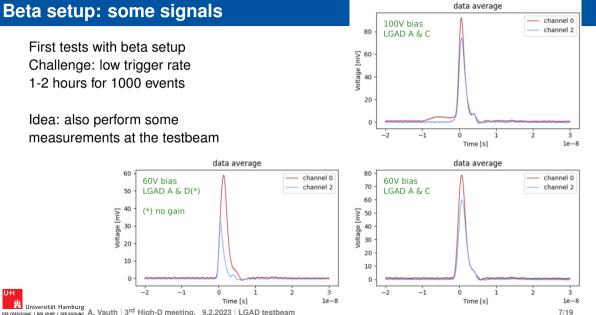
Idea: also perform some measurements at the testbeam

60

50

40

30

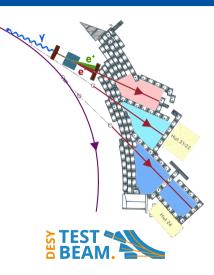

20

10

/oltage [mV]

THH.

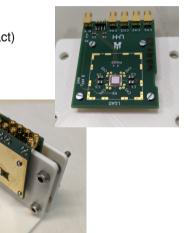
Universität Hamburg


Testbeam at DESY

Testbeam time December 2022:

- \blacktriangleright \sim 2.5 days area DESY II TB area 21
- Single electrons, beam energy used 2.8 GeV
- Together with Bohdan Dudar (DESY)

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam


Trigger on 40mV thresholds for signals within $\pm 2\,\text{ns}$ coincidence window

Tested at the testbeam:

- A: W1 Q2 1,5 (p-dose B, high diff, trench P1, extended contact)
- B: W3 Q1 5,4 (p-dose A, low diff, trench P1, dot contact)
- C: W9 Q1 2,4 (p-dose B, high diff, trench P3, dot contact)

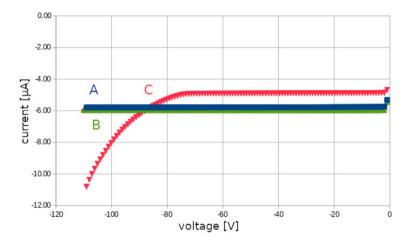
Combinations at the testbeam:

- A pixel 3 in front of B pixel 2
- C pixel 3 in front of A pixel 2
- C pixel 3 in front of B pixel 2

Trigger on 40mV thresholds for signals within $\pm 2 \, \text{ns}$ coincidence window

Tested at the testbeam:

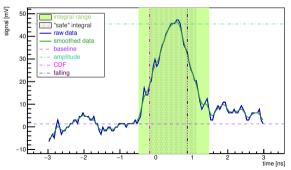
- A: W1 Q2 1,5
- B: W3 Q1 5,4 ("the new one")
- C: W9 Q1 2,4 (high current already in lab)


Combinations at the testbeam:

- A pixel 3 in front of B pixel 2
- C pixel 3 in front of A pixel 2
- C pixel 3 in front of B pixel 2

IV-Curves

UΗ


Decide to measure only up to 110 V, plus a few lower voltages

Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BLIDUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam First strategy: Smooth waveform "a bit",

Subtract baseline,

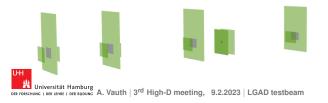
Apply constant-fraction discrimination (CDF) to define pulse starting time for each raw waveform

LGAD B, -90V, CDF 0.35, event 30

Collected charge

UHH

Amplitude (CDF 35%, bias -90V) — amplitude C3 --- amplitude C3 - amplitude A3 vents svent - amplitude A2 - amplitude B2 - amplitude B2 30 30 20 200 100 10 10 200 200 amplitude [mV] amplitude [mV] amplitude [mV] Integral (CDF 35%, bias -90V) --- integral A3 - integral C3 --- integral C3 - integral B2 - integral A2 - integral B2 Always lower in second LGAD? 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 integral [ns mV] integral [ns mV] integral [ns mV] Universität Hamburg prepresentation and the state of the state o 12/19

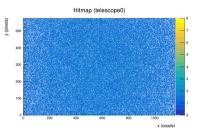

Allpix² simulation

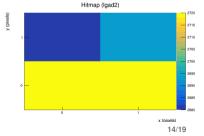
Implement setup in Allpix²

[doi:10.1016/j.nima.2018.06.020, arXiv:1806.05813]

Geometry:

- 45 um active thickness
- 540 um support wafer (Si)
- 1.6 mm thick PCB
- 2 mm cutout below LGAD
- z-positions as measured at the testbeam





Allpix² with 5 mm diameter beam, starting 4 m out: Compared to all events with hit in first telescope layer, the number of events in LGAD-2 pixel 0 is \sim 0.9%

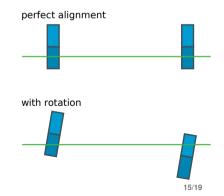
With 1kHz trigger rate for 20x10 scintillators: Expect hit rate per LGAD of 10Hz $\rightarrow \sim 2$ minutes for 1100 events

IF all of them are above threshold

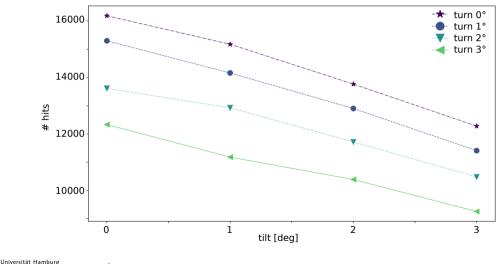
bias voltage	file name
-110V	C3-and-B2_BWFULL_1100_mult_2022-12-10_12-19-08.Wfm.bin
-100V	C3-and-B2_BWFULL_1100_mult_2022-12-10_11-41-00.Wfm.bin
-90V	C3-and-B2_BWFULL_1100_mult_2022-12-10_11-54-56.Wfm.bin
-80V	C3-and-B2_BWFULL_1100_mult_2022-12-10_12-32-44.Wfm.bin
-70V	C3-and-B2_BWFULL_1100_mult_2022-12-10_13-22-12.Wfm.bin

Higher bias voltage:

ightarrow Higher gain


IШ

- \rightarrow Higher amplitudes
- ightarrow More events above threshold

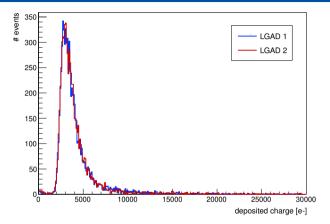

Also: very sensitive to mis-alignments

telescope rur run duration

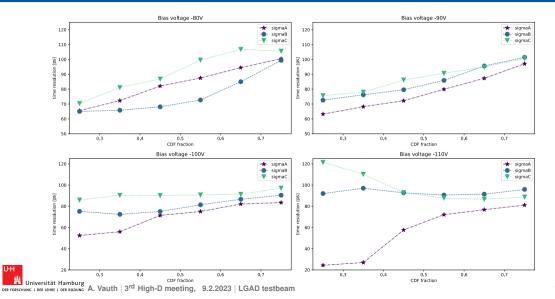
01574	7 min
01571	12 min
01572	22 min
01575	43 min
01576	73 min

Simulation: hit rate vs rotation

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam


Looking at deposited charge: Same charge for both LGADs

(which makes sense for 2.8 GeV beam)

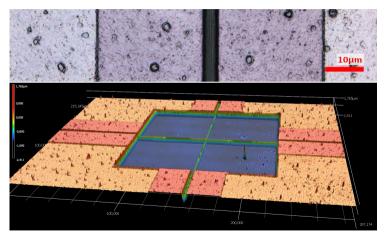

Does not match effect seen in data ③

 \rightarrow need to keep thinking about this...

Until then: calculate time resolution anyway

Results: Time res vs bias

Summary & Outlook


- Test beams: tool for detector development
- TB infrastructure: beam telesopes
 → goal: beam telescope timing layer
- Long term: 55 μm pitch structures with readout chip
- Current status: first test structures
- Setup of LGAD characterisation tools in progress
- First test in electron beam: Learned a lot about the setup, Many open questions
 Nice to-do-list for the future

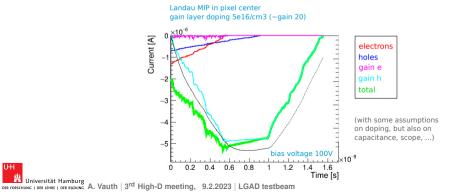
Backup Slides

First LGAD samples (2)

Close look at the samples:

thickness 584 \pm 2 μ m

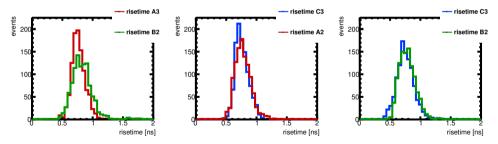
THH


IШ

What time scale of the signal can we expect?

At saturated drift velocity, drift time for 45 μ m: electrons ~450 ps, holes ~750 ps

Example (rough guess) from Weightfield 2 simulation


[http://personalpages.to.infn.it/~ cartiali / Weightfield2]

"10-90" risetime

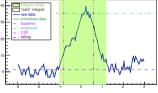
Note: this includes possible amplifier effects

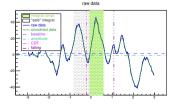
Risetimes (CDF 35%, bias -90V)

Similar risetimes for all samples, order of magnitude makes sense

Open questions

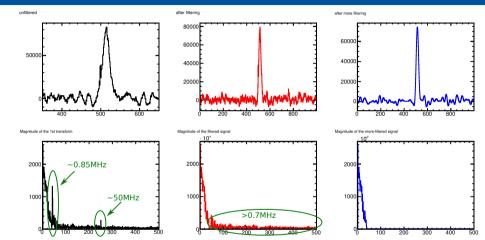

Data quality: remove "bad" waveforms?

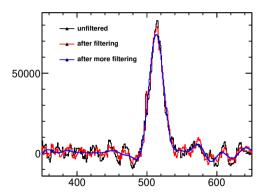

Reduce noise ("ringing")?


> Why signal so low in downstream LGAD?

> Gain at these voltages? (→ Laser)
 > Time resolution for same setup with Sr-90 source?
 → To-Do list for the lab ☺

B.C. by johnny hart



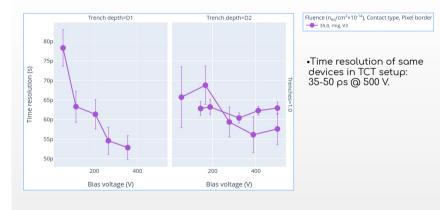

FFT to filter noise?

UHH

Not perfect. Also: Sadly, not all wave forms have such "clear" noise ...

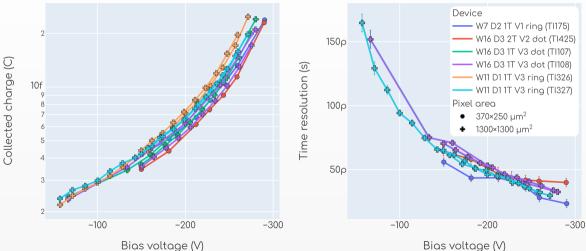
Universität Hamburg DER FORSCHUNG | DER LENKE | DER BLOUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam

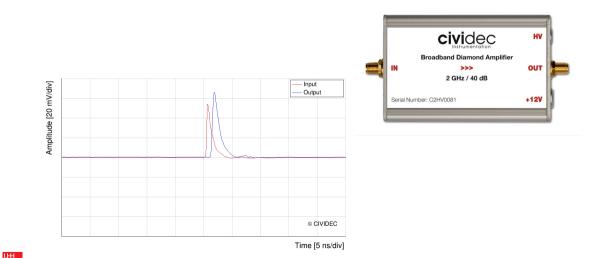
Not perfect. Also: Sadly, not all wave forms have such "clear" noise ...


Interpixel distance and time resolution

- Deeper trenches are better.
- Contact type "ring" is better.

to depend systematically on these design parameters.

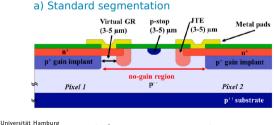

Time resolution with beta source


18

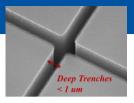
Test beam results T = Room T (September)

Same data from previous slide but as function of bias voltage.

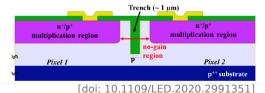
Cividec C2-HV



Universität Hamburg DER FORSCHUNG | DER ELEME | DER BLOUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam


TI-LGAD

Trench isolation:

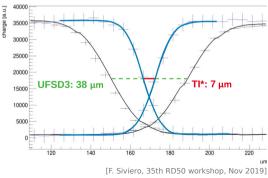

- Barrier structures replaced by trenches to isolate the pixels
- Filled with SiO2, Si3N4, Polysilicon
- Typical trench width < 1 µm, much smaller than conventional segmentation
 - ightarrow smaller no-gain region
 - $\mathcal{O}(\approx4\,\mu\text{m}$ to $7\,\mu\text{m})$

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam

b) Trench-isolated LGAD

31/19

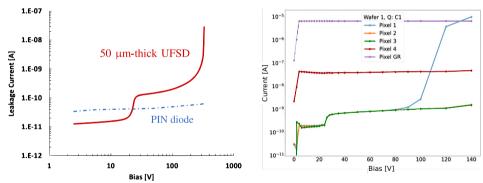

TI-LGAD


шн

Trench isolation:

- Barrier structures replaced by trenches to isolate the pixels
- Filled with SiO2, Si3N4, Polysilicon
- Typical trench width < 1 μm, much smaller than conventional segmentation
 - ightarrow smaller no-gain region

 $\mathcal{O}(\approx4\,\mu\text{m}$ to $7\,\mu\text{m})$



Comparison of FBK productions: UFSD3 vs Trench-Isolated

DER FORSCHUNG | DER LEHRE | DER BLIDUNG A. Vauth | 3rd High-D meeting, 9.2.2023 | LGAD testbeam

IV-curves (textbook and reality)

[M. Ferrero, R. Arcidiacono, M. Mandurrino, V. Sola, N. Cartiglia, 2021 "An Introduction to Ultra-Fast Silicon Detectors", ISBN 9780367646295]

FBK measurement with automatic probe (before dicing)