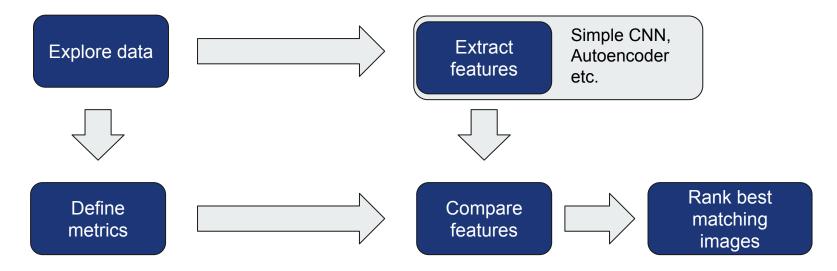
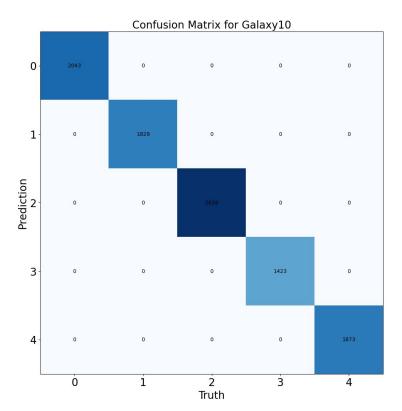

Milky Way Challenge


Team Yellow - Josef, Tobias, Nitish, Stephanie, Aaron

Dataset Exploration

How to tackle this problem?



Data Exploration

- Evenly distributed classes \rightarrow good for classification
- Classes:
 - Barred Spiral 0
 - **Unbarred Tight Spiral** 0
 - Unbarred Loose Spiral 0
 - Edge-on without Bulge 0
 - Edge-on with Bulge 0

similar classes

- similar classes
- Preprocessed all images to 64x64x3
 - \rightarrow values [0,1] by division by 255

Target Image

- Target image is a barred Spiral
- large black edges / sparseness
- artists representation

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp

- find suitable metrics for image comparison
- several packages allow non-Al image comparison

	mse	rmse	psnr	uqi	ergas	SCC	rase	sam	vifp
0	0.027954	0.167193	inf	0.759659	11.718323	0.012926	2850.967992	0.359854	0.411005
1	0.043954	0.209652	inf	0.675065	16.856165	-0.016002	4604.006668	0.521818	0.127013
2	0.071874	0.268093	inf	0.685547	15.651699	-0.002293	3286.736504	0.508952	0.280538
3	0.030361	0.174243	inf	0.746876	12.795824	0.006357	3087.710577	0.438481	0.390696
4	0.237948	0.487799	inf	0.479943	17.485029	0.012184	4083.393081	0.623266	0.632648
5	0.049683	0.222897	inf	0.702993	13.407740	-0.035949	3062.915620	0.457193	0.369263
6	0.021903	0.147998	inf	0.764772	12.913064	0.009743	3366.983789	0.419909	0.328860
7	0.119115	0.345131	inf	0.566635	15.642411	-0.008720	3665.240271	0.490860	0.554170
8	0.033524	0.183095	inf	0.682135	17.269837	-0.001357	4606.280992	0.559283	0.177191
9	0.047732	0.218477	inf	0.711160	12.910992	0.008070	2811.744986	0.482299	1.305406

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp

MSE (Mean Squared Error):

- Measures the average squared difference between corresponding pixels of two images.
- Higher values indicate greater dissimilarity between images.

RMSE (Root Mean Squared Error):

- The square root of MSE.
- Provides a similar measure of pixel-wise dissimilarity but in the same units as the image data.

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp

UQI (Universal Quality Index):

- A quality metric that combines luminance, contrast, and structure information.
- Higher UQI values indicate better image quality.

ERGAS (Normalized Global Relative Error):

- Measures the relative error in the average spectral information of images.
- Often used in remote sensing applications.

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp

SCC (Structural Content Correlation):

- Evaluates the structural similarity between two images.
- Higher values indicate greater structural similarity

RASE (Relative Average Spectral Error):

- Quantifies the spectral distortion between two images.
- Useful for assessing spectral image quality.

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp

SAM (Spectral Angle Mapper):

- Measures the spectral similarity between pixels in two hyperspectral images.
- Computes the angle between spectral vectors.
- Lower angles indicate greater similarity.

VIFP (Visual Information Fidelity for Perception):

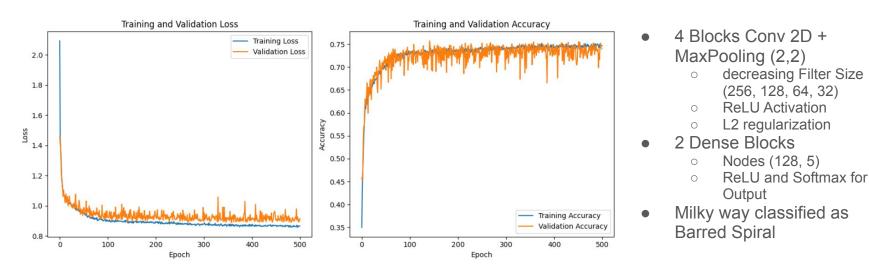
- A perceptual image quality metric.
- Reflects the degradation of visual information in an image.
- Higher VIFP values indicate better image quality.

Metrics for Image Comparison Cosine Similarity Metric

used to compare the **similarity between two vectors** in a multi-dimensional space.

Cosine Similarity(A, B) = $(A \cdot B) / (||A|| * ||B||)$

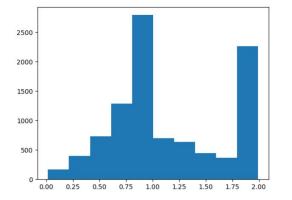
A and B are the vectors = images, $(A \cdot B)$ = dot product, ||A|| and ||B|| = norms of the vectors


Interpretation:

- Cosine similarity produces values between -1 and 1.
- A similarity score of 1 indicates that two vectors are identical.
- A score of -1 indicates complete dissimilarity.
- 0 suggests no similarity.

Classifier CNN Architecture + Results

Convolutional Classification Network



Convolutional Classification Network

Idea: Use output vector as latent space representation -> Calc absolute Error between the Target Image and all others

Absolute Error (Image/Target Image)

Take the 3 images with the smallest absolute error

Barred Spiral

Unbarred Loose Spiral

Barred Spiral

Feature Extraction using CNN-MLP-Classifier

Feature Extraction using CNN-MLP-Classifier

Model: "sequential_1"

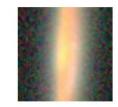
Layer (type)	Output Shape	Param #
conv1 (Conv2D)	(None, 62, 62, 32)	896
maxpool1 (MaxPooling2D)	(None, 31, 31, 32)	0
conv2 (Conv2D)	(None, 29, 29, 64)	18496
max_pooling2d_3 (MaxPoolin g2D)	(None, 14, 14, 64)	0
conv3 (Conv2D)	(None, 12, 12, 128)	73856
max_pooling2d_4 (MaxPoolin g2D)	(None, 6, 6, 128)	0
flatten_1 (Flatten)	(None, 4608)	0
dense_2 (Dense)	(None, 128)	589952
dense 3 (Dense)	(None, 5)	645

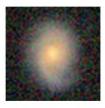
Trainable params: 683845 (2.61 MB) Non-trainable params: 0 (0.00 Byte) Use simple CNN to extract image features:

- last conv. layer = feature extractor
- apply suitable metric
- rank images according to metric

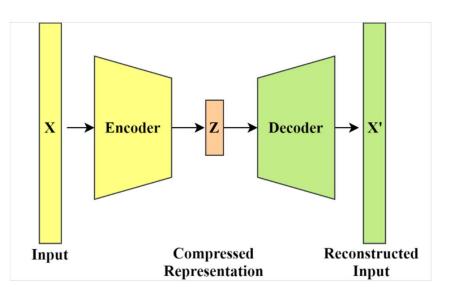
Metric: Cosine Similarities

ERUM Feature Extraction using CNN-MLP-Classifier





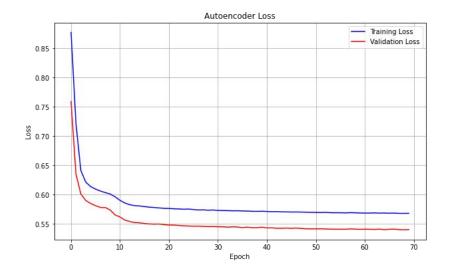
Feature Extraction using CNN-MLP-Classifier


	mse	rmse	uqi	ergas	SCC	rase	san	n vifp				(;)
0	0.004785	0.069173	0.642318	NaN	0.031262	24475.653885	NaN	NaN		netrics might	more ei	ncient.
1	0.011317	0.106382	0.582789	NaN	-0.003588	31489.553002	N;		Minimum	Maximum	Argmin	Argmax
2	0.010158	0.100789	0.612713	NaN	0.023427	29033.014865	N	mse	0.001612	0.023407	1410.0	768.0
3	0.011948	0.109305	0.625424	NaN	0.010847	26833.516599	N	rmse	0.040149	0.152994	1410.0	768.0
4	0.005961	0.077209	0.624085	NaN	0.032570	26128.943268	N	uqi ergas	0.546815 NaN	0.801562 NaN	1229.0 NaN	1410.0 NaN
								scc	-0.042413	0.168412	608.0	1410.0
1955	0. <mark>014</mark> 452	0.120215	0.580614	NaN	-0.033621	31615.875 <mark>47</mark> 4	N	rase sam	12803.164511 NaN	48516.174279 NaN	1410.0 NaN	968.0 NaN
1956	0.007230	0.085028	0.625738	NaN	-0.001913	24503.071977	N	vifp	NaN	NaN	NaN	NaN
1957	0.006867	0.082866	0.667316	NaN	0.050297	26485.917927	NaN	NaN				
1958	0.006419	0.080116	0.629740	NaN	0.037840	25054.603753	NaN	NaN				
1959	0.004079	0.063863	0.678443	NaN	0.0 <mark>41</mark> 187	19881.260985	NaN	NaN				

1960 rows × 8 columns

Feature Extraction using Autoencoder

Autoencoder Structure

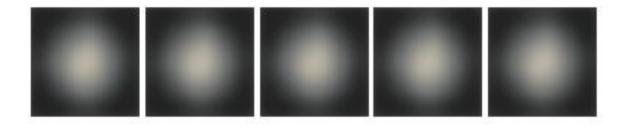


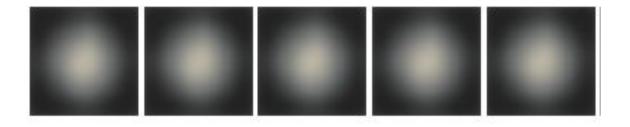
- Encoder:
 - 4 blocks Conv2D + Max Pooling (2,2)
 - decreasing filter size (64,32,16,8)
 - ReLU
 - Latent space (4,4,8)

- Decoder:
 - 4 blocks Conv2D + Upsampling2D (2,2)
 - increasing filter size (8,16,32,64)
 - ReLU
 - Last Conv2D with 3 Filters (RBG) + Sigmoid

Training loss and selecting the most similar image

- Loss: MSE
- How to get the most similar images: check for cosine similarity between the target and the other images in the (4,4,8) latent space.
- Select the images with cosine similarity greater than 0.9875.




Most similar images

Bonus Task: Generated Images

- Encode target Image to obtain features
- add noise to the features
- decode new
 features

Thank you for your attention!