

Autonomization

Martin Erdmann, *Peter Fackeldey*, Moritz Hannemann, Alexander Kappes, Frank Schreiber, Kilian Schwarz

Sustainability

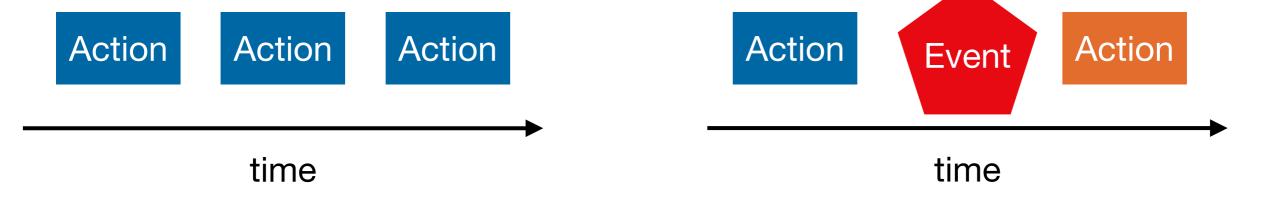
Thank you for the fruitful discussions!

Peter F. - 2.6.23

1: Vorsallag Autonomization 2: Eingriff Hardware 3. Autonom Anomaly Detection Symbolic Regression Artonomization Level schedulin Clusterna (Cooling) controlling Anwendugyplase Anwerdungs - & Designphase => unsupervised & reinforcement learning, IFT & supervised learning & classic algorithms

Autonomization level depends on application

Transfer (Industrie) Innovation spotential (disruptiv)



Automatization

Machines execute repetetive actions instead of humans (e.g. robots)

Autonomization

Machines interact with a dynamic environment and evaluates actions there

4 Where can we use autonomization?

Hardware	Software	Physics
Predictive maintenance		
(Cooling) controlling		
Job scheduling		
	Code generation	
		Symbolic Regression
		Clustering
	Anomaly Detection	
	Refining / Optimisation	

Are they sustainable (green)?

Hardware	Software	Physics
Predictive maintenance		
(Cooling) controlling		
Job scheduling		
	Code generation	
		Symbolic Regression
		Clustering
	Anomaly Detection	
	Refining / Optimisation	

6 How autonomous are these concepts?

- The level of autonomization can vary significantly
- Some concepts are clear:
 - Anomaly detection "only" notifies, no action afterwards
 - Reinforcement learning algorithm fully control their own actions
- Some are not so clear:
 - E.g. predictive maintenance ?

→ depends on the application

Notifying a human

Full control over actions

- AI/ML plays a key role in autonomization:
 - Unsupervised and reinforcement learning by design autonomous
 - Supervised learning, IFT, "classic" algorithms can be autonomous (only in application phase, i.e. not during training)
- Autonomization can happen on different levels
 - → how autonomous an algorithm acts often depends on its application
- Many application already in industry (e.g. hardware anomaly detection)
 - → we don't have to reinvent the wheel ("Transfer")
- The innovation potential is huge and largely unknown
 - → we expect a disruptive change in our workflows with plenty of undiscovered opportunities!