EXPLORING THE NON-EQUILIBRIUM EARLY UNIVERSE: FROM GRAVITATIONAL WAVES TO SPECTRAL DISTORTIONS

Pedro Schwaller Mainz University

Particle and Astroparticle Physics Colloquium in Hamburg

DESY

January 24, 2023

Messengers from the early Universe

- Gravitational waves
- (Distortions of the) Cosmic microwave background

Messages from non-equilibrium physics

Phase transitions

Axion/scalar field dynamics, strings, domain walls, ...

What do we know about the early Universe?

Thermal history

Thermal history and particle physics

Thermal history and particle physics

Early universe holds the key to many fundamental open questions in particle physics

- What is dark matter, and how is it made
- What is the origin of matter
- What is the dynamics of inflation and reheating

The early Universe soup

The early Universe soup

The early Universe soup

How to identify ingredients

Taste

i.e. study Universe today

Smell in kitchen

Cosmic microwave background

Splashes in kitchen

Gravitational Waves (from phase transitions)

Messengers I: Gravitational waves

Travel undisturbed from earliest times

Only produced by violent, non-equilibrium physics

Stochastic GW background

Or with very very (very!) high temperatures

Messengers II: Photons

Emitted at $T \sim 1 \,\mathrm{eV}$

Equilibrium phyiscs

- almost perfect black body spectrum
- Non-equilibrium physics can distort the spectrum
 - Probe of keV MeV temperatures

Non-equilibrium in the early Universe

GWs from Phase Transitions

QFT at finite temperature → symmetry restoration

GWs from Phase Transitions

First order PT \rightarrow Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

PT signal

PT characterised by few parameters:

- Latent heat $\alpha \approx \frac{\Omega_{\text{vacuum}}}{\Omega_{\text{rad}}}$
- Bubble wall velocity $\,arcalla\,$
- Bubble nucleation rate eta
- PT temperature T_*

More details, see e.g.:

O PRISMA+

NANOGrav saw something!

No 4σ evidence for Quadrupole

From NANOGrav collaboration, 2009.04496 Now also consistent signals in PPTA, EPTA and IPTA - still not fully conclusive though

Q

Significant Strain at low frequencies

Fit with broken power law signals

Wolfram Ratzinger & PS, 2009.11875

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Challenge for model building \rightarrow Hint for dark sector

Wolfram Ratzinger & PS, 2009.11875

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Some model parameters excluded by PTA data now!

QCD-like dark sectors

The new physics should be light and hidden

QCD-like dark sector can naturally have $\Lambda_d \sim {
m MeV}$

Confinement PT is first order for

▶
$$N_d \ge 3$$
 and $n_f = 0$

▶
$$N_d \ge 3$$
 and $3 \le n_f \lesssim 4N_d$

Can this explain the NANOGrav/PTA data?

Difficult question in itself due to strong coupling

Combine lattice and holography

Improved holographic QCD

Gürsoy, Kiritsis, Mazzanti, Nitti 0707.1324, 0707.1349, 0812.0792, 0903.2859, ...

$$\mathcal{S}_5 = -M_P^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} (\partial \Phi)^2 + V(\Phi) \right] + 2M_P^3 N_c^2 \int_{\partial M} d^4 x \sqrt{h} K$$

Want this to reproduce SU(N) theories $\lambda \to 0$

 $V(\lambda) = \frac{12}{\ell^2} (1 \triangleright v_0 \text{ confinement in IR } (\lambda \to \infty) \quad V(\lambda) \sim \lambda^{4/3} (\log \lambda)^{1/2}$

► Yang Mills beta function $\lambda_t = N_c g_{YM}^2$

$$V(\lambda) = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} [\log(1 + V_2 \lambda^{4/3} + V_3 \lambda^2)]^{1/2} \right\}^{\frac{1}{2}} SU(N_c)$$

Parameters fit to match RGE in V₀, V₁V₂
UV and fattice in IR!
fixed by UV
fit to lattice data
(thermodyn. or glueballs)

JGU

22

 Γ/T_c

Effective potential and bounce action

Bounce action

$$\begin{split} \mathcal{S}_{\text{eff}} &= \frac{4\pi}{T} \int d\rho \rho^2 \left[c \frac{N_c^2}{18\pi c^2} (\partial_r \lambda_h(r))^2 + V_{\text{eff}}(\lambda_h(r)) \right] \\ \mathcal{S}_{\text{eff}} &= \frac{4\pi}{T} \int d\rho \rho^2 \left[c \frac{N_c^2}{18\pi c^2} (\partial_r \lambda_h(r))^2 + V_{\text{eff}}(\lambda_h(r)) \right] \\ C \frac{18\pi c^2}{16\pi^2} (\partial_r \lambda_h(r))^2 + V_{\text{eff}}(\lambda_h(r)) \right] \\ \mathbf{Tunneling}_{\Gamma = T^4} \left(\frac{\mathbf{S}_B}{2\pi} \right)^{3/2} e^{-\mathcal{S}_B} \\ \Gamma \approx \mathbf{T} \\ \end{split}$$

Allows to compute α and β

	α	$\beta/H\left(v_w=1\right)$	$\beta/H(0.1)$	$\beta/H(0.01)$
$T_c = 50 \mathrm{MeV}$	0.343	9.0 ×10 ⁴	8.6×10^4	8.2×10^4
$100{ m GeV}$	0.343	6.8×10^{4}	6.4×10^{4}	6.1×10^{4}

Morgante, Ramberg, PS, 2210.11821

GW spectrum

First prediction for GW spectra of QCD-like dark sectors from holography

- for $N_c = 3$, $n_f = 0$
- Some work remains (wall velocity)
- Larger signal possible for larger N_c , n_f
- Agrees with estimates based
 on effective theories and lattice data
 (e.g. Halverson+ 2012.04071, Huang+ 2012.11614, March-Russell+ 1505.07109)

Morgante, Ramberg, PS, 2210.11821

Now what about the spectral distortions?

Spectral distortions?

Around $10^4 \leq z \leq 10^6$, photon number is frozen

Any energy added to the photons leads to a so called μ distortion

Energy source we consider here: Gravitational damping of dark sector fluctuations

Ramberg, Ratzinger & PS, 2209.14313

Spectral distortions as probes of low scale GWs

Tensor fluctuations (GWs) also source μ distortions

But difficult to test. Better to directly go for the scalar fluctuations (that also source the GWs)

Spectral distortions from dark sector anisotropies

Assume decoupled dark sector, $\Omega_d \ll 1$

Large fluctuations $\delta_d = \delta \rho_d / \rho_d \sim 1$

 Gravitationally induced sound waves in photons e_{ac}

Resulting μ distortions

$$\mu = \int d\log k \ \epsilon_{ac}^{\lim}(k) \mathcal{W}(k),$$

Example source I: Dark sector phase transition

Note: Ω_d fixed to satisfy $N_{\rm eff}$ constraints

Ramberg, Ratzinger & PS, 2209.14313

Example source II: Annihilating domain walls

Already probes allowed parameter space

Complementary to GW probes, can break degeneracy

Multi-messenger cosmology

Source III: (global) cosmic strings

Note: Local strings mainly radiate from small loops and are thus NOT an efficient source of spectral distortions

Example source IV: Audible axions...

Expect better sensitivity for axion fragmentation

Summary

GWs and CMB spectral distortions (SD) probe non-equilibrium physics in the early Universe

Sensitive to otherwise inaccessible (dark) sectors

PTA data hints towards a strong first order PT at the MeV scale, potentially in a dark sector

Holography allows computation of PT observables also at strong coupling

Combination of GW and SD

multi-messenger probes of early Universe anisotropies

Thank you for your attention!

Standard model

The hot early Universe sources GWs!

- Classical picture: thermal fluctuations source tensor fluctuations
- Quantum picture: gluon + gluon -> graviton

From Ringwald,

Zhu, 2020

Schütte-Engel, Tamarit, 2020

Original computations:

Ghiglieri, Jackson, Laine,

Ghiglieri, Laine, 2015

Composite DM / Hidden Sector

- SU(N) dark sector with neutral "dark quarks"
- Confinement scale
 - $\Lambda_{\rm darkQCD}$
- DM is composite "dark proton"

Bai, PS, PRD 89, 2014 PS, Stolarski, Weiler, JHEP 2015

JGU

Phase Diagram II

SU(N) - PT

Consider. $SU(N_d)$ with n_f massless flavours

PT is first order for

$$\blacktriangleright N_d \geq 3$$
 , $n_f = 0$

$$\blacktriangleright N_d \geq 3$$
 , $\ 3 \leq n_f < 4N_d$

Svetitsky, Yaffe, 1982 M. Panero, 2009

Pisarski, Wilczek, 1983

Not for:

•
$$n_f = 1$$
 (no global symmetry, no PT)

•
$$n_f = 2$$
 (not yet known)

Note: Nature of the PT does not depend on arbitrary model parameters

Signal properties

Combine lattice and holography

Improved holographic QCD

$$\mathcal{S}_5 = -M_P^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} (\partial \Phi)^2 + V(\Phi) \right] + 2M_P^3 N_c^2 \int_{\partial M} d^4 x \sqrt{h} K$$

► AdS Einstein-dilator/g@ vity ↔ 4D CFT

► Dilaton potential $V(\Phi)$

Φ

Dilaton \(\lambda\) = exp^{\lambda}\(\overline{F}\) exp^{\Delta}\(\verline{F}\) Hooft coupling \(\lambda_t\) = \(\verline{N}_c g_{YM}^2 g_{YM}^2 \\ b(r) = E_0 b(r) \\\\

 ...

Solutions of EOM \leftrightarrow phases of SU(N) $_c$)

Gürsoy, Kiritsis, Mazzanti, Nitti 0707.1324, 0707.1349, 0812.0792, 0903.2859, ...

Improved holographic QCD

 $\lambda \to 0$ $\lambda \to \infty$ Want this to reproduce SU(N) theories $V(\lambda) = \frac{1}{\ell^2} (1 + v_0 \lambda + v_1 \lambda^2 + ...)$ $\blacktriangleright \text{ Confinement in IR } (\lambda \to \infty)$ $V(\lambda) \sim \lambda^{4/3} (\log \lambda)^{1/2}$

> Yang Mills beta function in UV ($\lambda \rightarrow 0$)

 $V(\lambda) = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} [\log(1 + V_2 \lambda^{4/3} + V_3 \lambda^2)]^{1/2} \right\}$

Fix parameters:

- \blacktriangleright V_0, V_2 to Kepred $V_{1/2}^{1/2}$ 2 loop YM running ifixed/by UV
- \blacktriangleright V₁, V₃ fit to reproduce SU(3) lattice thermodynamics in IR

The phase transition in ihQCD

Three solutions

- ► Big BH: Deconfined phase
- Small BH: Unstable, saddle point
- Thermal gas: Confined phase

The phase transition in ihQCD II

At $T = T_c$, deconfined phase becomes meta-stable

Morgante, Ramberg, PS, 2210.11821

The phase transition in ihQCD III

Interpolate between big and small BH solutions

- ► Do some hard work...
- ► Win :)

