Least Squares Fits

Aachen Online Statistics School, March 13, 2023

Olaf Behnke, DESY

Introduction

- Least squares fits are a workhorse in data analysis
- In its most simple form: fitting to data y_i ± σ_i measured at positions x_i known model f(x_i; *ā*) depending on fit parameters *ā*, by minimising

$$\chi^2 = \sum_{i=1}^{N} \left[\frac{y_i - f(x_i; \vec{a})}{\sigma_i} \right]^2$$

- Ideal tool if measurements have known gaussian uncertainties
- HEP Examples: Track fits, s+b fits to binned mass distributions (not optimal tool!) and combining data

Olaf Behnke

Least Squares Fits

What is the maximum number of fit parameters that have been fitted with Least Squares in HEP (and in which application)?

Outline

- Combining measurements
- χ^2 as a measure of goodness-of-fit
- Linear and non-linear fits (straight line, circle, mass peak fit)

χ^2 fit - Heuristic motivation

n-measurements y_i ± σ_i at fixed x_i

• Model:
$$y = f(x, a)$$
 here:
 $y = ax$

• How to determine a? \Rightarrow Idea: for correct *a* one expects: $|y_i - f(x_i, a)| \leq \sigma_i$

Min. $\chi^2 = \sum_{i=1}^{n} \frac{(y_i - f(x_i, a))^2}{\sigma_i^2}$ turns out to be good & practical method!

χ^2 fit - Minimisation

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - f(x_{i}, a))^{2}}{\sigma_{i}^{2}}$$
Task: find Minimum w.r.t a
$$\frac{d\chi^{2}}{da_{|a=\hat{a}}} = 0 = 2 \cdot \sum_{i=1}^{n} \frac{(y_{i} - f(x_{i}, a))}{\sigma_{i}^{2}} \cdot \frac{df(x_{i}, a)}{da}$$

In general not analytically solvable \Rightarrow use iterative (numerical) methods (MINUIT, Mathematica)

Fit of a constant function (no x dependence)

- Determine vertical position of horizontally flying particle
- Averaging of *n* measurements
 y_i ± σ_i

$$\chi^2 = \sum_{i}^{n} \frac{(y_i - a)^2}{\sigma_i^2}$$

Fit of a constant function (one measurement)

 "Idiot example" of single measurement y₁ ± σ₁

$$\chi^{2} = \frac{(y_{1} - a)^{2}}{\sigma_{1}^{2}}$$
$$Min.\chi^{2}: \quad \frac{d\chi^{2}}{da} = 0$$

 \rightarrow Estimated value: $\hat{a} = y_1$

 \rightarrow Error propagation: $\sigma_{\hat{a}} = \sigma_1$

Fit of a constant function (one measurement)

Likelihood
$$L \sim \exp\left[-\frac{(a-\hat{a})^2}{2\sigma_{\hat{a}}^2}\right]$$
 with $\chi^2 = \frac{(a-\hat{a})^2}{\sigma_{\hat{a}}^2}$
 $\Rightarrow L \sim e^{-\chi^2/2}$ and $\chi^2 = -2ln(L)$

Max. L \equiv Min. χ^2 (holds for fitting to measurements with known gaussian uncertainties)

Retrieve $\sigma_{\hat{a}}^2$ from : $\frac{1}{\sigma_{\hat{a}}^2} = \frac{1}{2} \frac{d^2 \chi^2}{da^2}_{|a=\hat{a}}$ or from $\chi^2(\hat{a} \pm \sigma_{\hat{a}}) - \chi^2(\hat{a}) = 1$

Note: These are the two standard error determination methods for χ^2 fits! For generalised $\tilde{\chi}^2 = -2 \ln(L)$, the second method is more reliable for non-gaussian L, why?

Fit of a constant function - *n* measurements

Likelihood for observed measurements y_i as function of true value a:

$$L(y_1, y_2, ..., y_n | a) \propto \prod_{i=1}^n e^{-\frac{(y_i - a)^2}{2\sigma_i^2}} = e^{-\frac{1}{2} \sum_{i=1}^n \frac{(y_i - a)^2}{\sigma_i^2}} = e^{-\frac{\chi^2}{2}}$$

- χ^2 is sum of individual $\chi_i^2 = \frac{(y_i a)^2}{\sigma_i^2}$
- The sum of parabolas is another parabola
- Averaging can be done graphically!

Fit of a constant function - many measurements

Expand χ^2 around its minimum at \hat{a} :

$$\chi^2 = \chi^2(\hat{a}) + \underbrace{\frac{d\chi^2}{da}}_{=0} \cdot (a - \hat{a}) + \frac{1}{2} \frac{d^2\chi^2}{da^2}_{|a=\hat{a}} \cdot (a - \hat{a})^2$$

$$= \chi^{2}(\hat{a}) + H \cdot (a - \hat{a})^{2} \text{ with } H = \frac{1}{2} \frac{d^{2}\chi^{2}}{da^{2}} \text{ (for one par. a number)}$$
$$\Rightarrow L(y_{1}, y_{2}, ..., y_{n} | a) \propto \underbrace{e^{-\frac{\chi^{2}(\hat{a})}{2}}}_{\text{Fit consistency}} \cdot \underbrace{e^{-\frac{1}{2}H \cdot (\hat{a} - a)^{2}}}_{\text{Parameter info}}$$

 \Rightarrow Latter term can be interpreted as Bayesian posterior density for true **a**, using flat prior: Gaussian with center **â** and width $\sigma = H^{-1/2}$

Averaging several measurements

n measurements $y_i \pm \sigma_i$:

Result $\hat{a} = \sum_{i=1}^{n} \left[\frac{y_i}{\sigma_i^2} \right] / \sum_{i=1}^{n} \left[\frac{1}{\sigma_i^2} \right]$ $\frac{1}{\sigma_{\hat{a}}^2} = \frac{1}{2} \frac{d^2 \chi^2}{da^2} = \sum_{i=1}^{n} \frac{1}{\sigma_i^2}$

Role of Hesse matrix - illustrated for weighted average

H is "counting the Fisher information" from the measurements **Finally** $\sigma_{\hat{a}}^2 = cov(\hat{a}) = H^{-1}$ Note: all this holds also for LSQ fits with many parameters

Olaf Behnke

Least Squares Fits

Averaging - reformulated

Single measurements contribute with weight $G_i = \frac{1}{\sigma_i^2}$; $G_s := \sum_{i=1}^n G_i$;

Fit result

$$\hat{a} = \frac{1}{\sum_{i=1}^{n} G_i} \cdot \sum_{i=1}^{n} G_i y_i = \frac{1}{G_s} \cdot \sum_{i=1}^{n} G_i y_i$$

$\sigma_{\hat{a}}$ from simple error propagation:

$$\sigma_{\hat{a}}^2 = \sum_{i=1}^n \left(\frac{d\hat{a}}{dy_i}\right)^2 \cdot \sigma_i^2 = \sum_{i=1}^n \left(\frac{G_i}{G_s}\right)^2 \cdot \sigma_i^2 = \frac{1}{G_s^2} \cdot \sum_{i=1}^n G_i = \frac{1}{G_s} = \frac{1}{\sum_{i=1}^n 1/\sigma_i^2}$$

⇒ Least square fitting is a clever mapping of measurements to fit-parameters and applying error propagation!

Olaf Behnke

Least Squares Fits

Averaging - battle of weight schemes

Generalised averaging result

$$\hat{a} = \frac{1}{G_s} \cdot \sum_{i=1}^n G_i y_i \quad \text{with} \quad G_s := \sum_{i=1}^n G_i$$

$$\sigma_{\hat{a}}^2 = \sum_{i=1}^n \left(\frac{d\hat{a}}{dy_i}\right)^2 \cdot \sigma_i^2 = \sum_{i=1}^n \left(\frac{G_i}{G_s}\right)^2 \cdot \sigma_i^2$$

Average $y_1 = 12 \pm 1$ and $y_2 = 8 \pm 3$ **()** $G_i = 1$ $\Rightarrow \hat{a} = 10.; \sigma_{\hat{a}} \approx 1.6$

2
$$G_i = 1/\sigma_i \Rightarrow \hat{a} = 11.1; \ \sigma_{\hat{a}} \approx 1.05$$

3
$$G_i = 1/\sigma_i^2 \Rightarrow \hat{a} = 11.6; \ \sigma_{\hat{a}} \approx 0.95$$

Least squares wins

Graphical averaging of two measurements - Exercise

All input measurements have uncertainty $\sigma = 1$ Shown are χ^2 curves for two measurements and their sum (red)

• How do the LSQ results for \hat{a} and $\sigma_{\hat{a}}$ differ for the two cases?

• Homework: proof that in general $\chi^2_{min} = \chi^2(\hat{a}) = \frac{(y_1 - y_2)^2}{\sigma_1^2 + \sigma_2^2}$, where σ_1 and σ_2 denote the y_1 and y_2 unc.

Recall Likelihood decomposition for averaging *n* measurements:

$$\Rightarrow L(y_1, y_2, ..., y_n | a) \propto \underbrace{e^{-\frac{\chi^2(\hat{a})}{2}}}_{\text{Fit consistency}} \cdot \underbrace{e^{-\frac{1}{2}H \cdot (\hat{a} - a)^2}}_{\text{Parameter info}}$$

Now lets have a closer look at the first term

Consistency of measurements

Example: Two measurements $y_1 \pm \sigma_1$ and $y_2 \pm \sigma_2$ true value *a* is known, are the measurements consistent with *a*?:

DESY, March 13, 2023 18 / 41

χ^2 for two measurements and known true value a

Expected density for (y_1, y_2) (simple case a = 0; $\sigma_1 = \sigma_2 = 1$):

$$f(y_1, y_2) \propto e^{-y_1^2/2} e^{-y_2^2/2} = e^{-r^2/2} = e^{-\chi^2/2}$$

Probability to find value between *r* and *r* + *dr* \Rightarrow enhanced by space factor $2\pi r$

Finally

$$z = r^2 : \rightarrow f(z) dz = f(r) \frac{dr}{dz} dz = \frac{1}{2} e^{-z/2} dz$$

 \rightarrow introduces χ^2 -distribution for $z=\chi^2$ and two dimensions (ndf=2): $f(z,2)=\frac{1}{2}e^{-z/2}$

χ^2 function for *n* degrees of freedom

 \rightarrow maps the χ^2 in *n* dimensions into **probability density** for χ^2

$$f(\chi^2, n) = \frac{1}{\Gamma(n/2)2^{n/2}} \cdot (\chi^2)^{n/2-1} \cdot e^{-\chi^2/2}$$

with
$$\Gamma(n/2) = \int_0^\infty dt \, e^{-t} t^{n/2-1}$$

χ^2 function for various *n*

$f(\chi^2, 2)$ function and p-value

Question: Is a $\chi^2/ndf = 1.2$ showing reasonable consistency?

World averages

$$\chi^2_{min} =$$
 10.8, $n_{dof} =$ 4
p-value of $\chi^2_{min} =$ 0.029

Taking out Experiment 5: $\chi^2_{min} = 1.7$, $n_{dof} = 3$, p-value = 0.64 "Outlier rejection", is this allowed?

Scaling all errors by $s = \sqrt{\chi^2_{min}/n_{dof}} = 1.64$ $\chi^2_{min} = n_{dof} = 4$, p-value = 0.4

Standard procedure by Particle Data group \rightarrow "destroying" the hard work of many experimentalists, but what can one do?

Fits with problems: Outliers

Toy simulations of p0 "track fits" through 10 data points

Exemplary fit

 $\chi^{\rm 2}$ distribution for 2000 fits

TMath :: $Prob(\chi^2, 9)$ distribution

Random 10% outl.

 $\Rightarrow \chi^2$ and its p-value value highly sensitive to outliers!

Olaf Behnke

Least Squares Fits

Most general LSQ fit case

- y_i, y_i correlated measurement with cov. V_{ii}
- Use vectors

$$\vec{y}^t = (y_1, y_2, ..., y_n)$$
 and $\vec{f}(\vec{a})^t = (f(x_1), f(x_2), ..., f(x_n))$

m fit-parameters *ā*

$$\rightarrow \begin{vmatrix} \chi^2 &= [\vec{y} - \vec{f}(\vec{a})]^t V^{-1} [\vec{y} - \vec{f}(\vec{a})] \\ &= \sum_{i,j=1}^n (y_i - f(x_i, \vec{a})) V_{ij}^{-1} (y_j - f(x_j, \vec{a})) \end{vmatrix}$$

Example averaging two correlated measurements y_1, y_2

Measure vertical track position in two detector layers with global position uncertainty:

Linear LSQ fits

$$\chi^{2} = \left(\vec{y} - A\vec{a}\right)^{t} V^{-1} \left(\vec{y} - A\vec{a}\right)$$

Linear model $\vec{y} := A \vec{a}$, *A* is called design matrix <u>Example constant</u>: $y = a_0$; $\rightarrow \vec{a} = (a_0)$; $A = \begin{pmatrix} 1 \\ .. \\ 1 \end{pmatrix}$ Example parabola: $y = a_0 + a_1x + a_2x^2$

$$ightarrow ec{a}^t = (a_0, a_1, a_2); \quad A = \left(egin{array}{ccc} 1 & x_1 & x_1^2 \ .. & & \ 1 & x_n & x_n^2 \end{array}
ight)$$

In general: $A = A(\vec{x})$, but no dependence on \vec{a}

Examples for linear least squares fits

Function can be highly non-linear in x

Linear χ^2 fit solution

$$\chi^2 = (\vec{y} - A\vec{a})^t V^{-1} (\vec{y} - A\vec{a})$$

Min.
$$\chi^2 \to \frac{d\chi^2}{d\vec{a}^t} = 0 = -2A^t V^{-1} \vec{y} + 2A^t V^{-1} A \vec{a}$$

Normal equations:

$$\hat{\vec{a}} = (A^t V^{-1} A)^{-1} A^t V^{-1} \vec{y}$$

= $H^{-1} A^t V^{-1} \vec{y}$ with $H = (A^t V^{-1} A) = \frac{1}{2} \frac{d^2 \chi^2}{d\vec{a}^2}$
 $Cov(\hat{\vec{a}}) = H^{-1}$

Powerful & simple linear algebra to solve fit!

Straight line fit

$$\chi^{2} = \sum_{i=1}^{N} \frac{(y_{i} - \theta_{0} - x_{i} \theta_{1})^{2}}{\sigma^{2}}$$
$$\Leftrightarrow \chi^{2} = (\vec{y} - A\vec{\theta})^{T} V^{-1} (\vec{y} - A\vec{\theta}),$$

with
$$\vec{ heta} = \begin{pmatrix} heta_0 \\ heta_1 \end{pmatrix}$$
; $A = \begin{pmatrix} 1 & x_1 \\ 1 & x_N \end{pmatrix}$; $V = \begin{pmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{pmatrix}$

Solution with normal equations:

$$\hat{\vec{\theta}} = (A^T V^{-1} A)^{-1} A^T V^{-1} \vec{y} = \sigma^2 (A^T A)^{-1} \frac{1}{\sigma^2} A^T \vec{y} = (A^T A)^{-1} A^T \vec{y}$$

$$= \left(\sum_i i \sum_i x_i \right)^{-1} \left(\sum_i y_i \right)^* = \left(\begin{array}{c} N & N\overline{x} \\ N\overline{x} & N\overline{x^2} \end{array} \right)^{-1} \left(\begin{array}{c} N\overline{y} \\ N\overline{xy} \end{array} \right)$$

$$= \left(\begin{array}{c} 1 & \overline{x} \\ \overline{x} & \overline{x^2} \end{array} \right)^{-1} \left(\begin{array}{c} \overline{y} \\ \overline{xy} \end{array} \right) = \frac{1}{\overline{x^2 - \overline{x}^2}} \left(\begin{array}{c} \overline{x^2} & -\overline{x} \\ -\overline{x} & 1 \end{array} \right) \left(\begin{array}{c} \overline{y} \\ \overline{xy} \end{array} \right) = \frac{1}{V[x]} \left(\begin{array}{c} \overline{x^2}\overline{y} - \overline{x} \overline{xy} \\ -\overline{x} \overline{y} + \overline{xy} \end{array} \right)^{**}$$

Straight line fit - Fit parameter uncertainties

Uncertainty of slope θ₁ ~ 1/√V[x] – lever arm matters!
 Negative correlation coefficient ρ = V₀₁/√V₀₀V₁₁ = -x/√x² = -0.913 ⇔ Raising θ₀ can be compensated by lowering θ₁

• Fixing θ_0 to 0.05 \Rightarrow reduces θ_1 uncert. by factor $\sqrt{1-\rho^2}=0.4$

Non linear least squares fits (one parameter example)

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - f(x_{i}, a))^{2}}{\sigma_{i}^{2}}$$

Now $f(x_i, a)$ depends **non-linearly** on *a*, examples:

$$f(x, a) = tan(ax), \quad ln(ax), \quad a \exp(-ax)$$

Find min. χ^2 by solving for $g = \frac{d\chi^2}{da} = 0$ with **Newton steps**:

In Appendix: example of a circle fit (transverse track trajectory)

0	laf	Be	hn	ke
0	iu.	20		

Highly non-linear mass peak fit, $x = m = m_{\mu^+\mu^-}$

Fit to observed event counts
$$k_i$$

 $f(m; M) = B + S \cdot \exp\left[\frac{(m-M)^2}{2\sigma^2}\right]$
B known background
S: predicted Signal strength
 σ : known detector resolution
M: unknown mass of particle
Use Neyman- χ^2 that assumes
 $\sigma_{k_i} = \sqrt{k_i}$ and scan χ^2 vs M
 $\chi^2 = \sum_{bini} \frac{[k_i - f_i(m; M)]^2}{k_i}$
 $\chi^2 = \sum_{bini} \frac{[k_i - f_i(m; M)]^2}{k_i}$

• Many local χ^2 minima, danger to get caught there

• reasonable χ^2 of 47 (ndof = 49) only at global χ^2_{min} near J/ψ mass

Binned mass peak fit: Neyman χ^2

- Fit to event counts k_i in bin i
- Fit function f=g+p0; $f_i = \int_{bin i} f dm$:

Bins with $k_i < f_i$ pull fit down, because assumed uncertainty $\sigma_i = \sqrt{k_i}$ is too small!

Olaf Behnke

Least Squares Fits

Binned mass peak fit: Pearson χ^2

Increasing f_i in denominator of χ^2 terms decreases χ^2 !

Binned mass peak fit: Poisson Likelihood

And the winner is Maximum Likelihood

Summary

- Least squares fit is an essential parameter estimation tool
- Ideal for fits to measurements with known gaussian uncertainties
- Min. χ^2 values provide important GOF-test
- Many more LSQ fit applications than discussed today, e.g.:
 - Alignment, fit with Millepede positions of ~40k CMS tracker modules
 - Kinematic constraint fits (see http://www-library.desy.de/preparch/books/BloLoBuch.pdf)
 - Unfolding of differential cross sections see https://arxiv.org/abs/1611.01927 and

https://indico.desy.de/indico/event/22731/session/5/contribution/24/material/slides/0.pdf

- Roger Barlow: "Statistics, A Guide To The Use Of Statistical Methods In The Physical Sciences" Wiley & Sons, 1994
- Olaf Behnke, Kevin Kröninger, Gregory Schott and Thomas Schörner Sadenius: "Data Analysis in-High-Energy-Physics" Wiley & Sons, 2013
- Glen Cown: "Statistical Data Analysis", Oxford Science Publications, 1997
- Fred James: "Statistical Methods in Experimental Physics", 2nd edition, World Scientific, 2006
- Louis Lyons: "Statistics for Nuclear and Particle Physicists", Cambridge University Press, 1986

Appendix

Straight line fit - Post-fit trajectory and ± 1 -sigma band

Central straight-line fit defines **best position estimate** $\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 x$ and two lines $\hat{y} \pm \sigma_{\hat{y}}$ a 68% **enclose central confidence region**, with $\sigma_{\hat{y}}$ from error propagation:

$$\sigma_{\hat{y}} = \sqrt{\left(\frac{\partial \hat{y}}{\partial \theta_0}\right)^2 V_{00} + \left(\frac{\partial \hat{y}}{\partial \theta_1}\right)^2 V_{11} + 2\frac{\partial \hat{y}}{\partial \theta_0}\frac{\partial \hat{y}}{\partial \theta_1} V_{01}} = \sqrt{V_{00} + x^2 V_{11} + 2x V_{01}}.$$

LSQ Straight line fit: Data $y_i(x_i) \Rightarrow$ parameters $\theta_0, \theta_1 \Rightarrow$ Trajectory y(x)

Circle fit, illustration of Newton steps

 Fit the curvature κ of a track flying through perpendicular magnetic field

