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What it is TOPICS

How it works: Resonance
Uncertainty estimates
Coverage

Several Parameters

Do’s and Dont’s with Likelihoods:

COMBINING PROFILE LIKELIHOODS
NORMALISATION FOR LIKELIHOOD
A(n £) = 0.5 RULE

£__. AND GOODNESS OF FIT

Bayes and Frequentism: What is Probability?



DO'S AND DONT'S WITH £

- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
« A(In £) = 0.5 RULE

AND GOODNESS OF FIT

max

o L

 BAYESIAN SMEARING OF £

« USE CORRECT £ (PUNZI| EFFECT)



Simple example: Parameter for Angular distribution

y =N (1 + B cos20)
=N (1 + B cos?0,)
= probability density of observing 0,, given 3
L(B) =11y,
= probability density of observing the data set y, given 3
Best estimate of 3 is that which maximises £

Values of B for which £ is very small are ruled out
Precision of estimate for B comes from width of £ distribution

CRUCIAL to normalise y N =1/{2(1 + p/3)}
(Information about parameter § comes from shape of exptl distribution of cos6)

ALVANAN

cos 0 cos 0



How It works: Resonance

y ~ [/2

(M-Mp)? + (T/2)2

m —* m —

Vary MO Vary [

Find overall optimum by allowing both to vary simultaneously s



Conventional to consider
£=1In(L) =2 In(y,)
For large N, £ - Gaussian
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Maximum likelihood uncertainty

Range of likely values of param n from width of .£ or 1 dists.
If £(u) is Gaussian, following definitions of o are equivalent:
1) RMS of £(n)

2) 1N(-d2InL / du?)  (Mnemonic)

3) In(L(pgt0) = In(L(Wo)) -1/2
If £(u) is non-Gaussian, these are no longer the same

“Procedure 3)above-still gives interval-thatctontains the
true value of parameter y with 68% probability”

Uncertainties from 3) usually asymmetric, and asym uncertainties are
messy. So choose param sensibly

e.g 1/p rather than p; TorA



Realistic analyses are more
complicated than this

Lifetime Determination
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SEVERAL PARAMETERS

1 param p | =InL
.p fromdl/dp =0 i.e from max of £
sz = 1/(-d?l/dp?)

Many dimensions I(p4, po,.-...)

P+, Py, from dl/dp,= 0 i.e. from max of £
For uncertainties, define

H; = d?l/dp; dp; = Inverse Covariance Matrix
Covariance Matrix E; = (H™),

Diagonal Elements for variances off-diag for covariances

B

)(‘Jr\ ‘.

orrelated

For many params:

N.B1 Ellipsoid with I=I_.. -0.5 does

v Not have 68% assymptotic

031 wrrel et coverage.
' s N.B2 Uncert on x is not given by
varying x till | = Imax -0.5, while

~keeping all other params constant

PROFILE £

prof _B(B Vbest(B)) where
B = param of interest

Vv = nuisance param(s)
Uncertainty on 3 from
decrease in In(£L) by 0.5
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ML and EML

ML uses fixed (data) normalisation
EML has normalisation as parameter

Example 1: Cosmic ray experiment

See 96 protons and 4 heavy nuclei

ML estimate 96 + 2% protons
EML estimate 96 + 10 protons

Example 2: Decay of resonance
Use ML for Branching Ratios
Use EML for Partial Decay Rates

4 £2% heavy nuclei
4 + 2 heavy nuclei

12



Extended Maximum Likelihood

Maximum Likelihood uses shape - parameters
Extended Maximum Likelihood uses shape and normalisation
i.e. EML uses prob of observing:
a) sample of N events; and
b) given data distribution in x,......
- shape parameters and normalisation.

Example: Angular distribution

Observe N events total e.g 100
F forward 96
B backward 4
Rate estimates ML EML
Total 100+10

Forward 96+2 96+10
Backward 4+2 4+ 2

13



DO'S AND DONT'S WITH £

- COMBINING PROFILE £s
‘NORMALISATION FOR LIKELIHOOD
« A(In £) = 0.5 RULE

» £__ AND GOODNESS OF FIT

max

* PDFs and LIKELIHOODS

14
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Danger of combining profile £s

Experiments quote Likelihood, profiled over
nuisance parameters, so that combinations can
be performed.

Very simple ‘tracking’ example:
* No magnetic field
* 2-D fit of straight line y = a + bx

a = parameter of interest, b = nuisance param
* Track hits in 2 subdetectors, each of 3 planes

16



o —

X—=

(a) Hits in 2 sub-detectors, each with 3
planes T
(b) Covariance ellipses for separate fits L, INLy
and L,, and combined L_,,
(c) InL,, as function of a, for all 3 lines
(d) bt as a function of a

N.B. b, for L, and L, are the same

bbest |—1 |_2 17




COSMOLOGY EXAMPLE

Plot of dark energy fraction v dark

matter fraction by various methods.

Each determines dark energy
fraction poorly, but combination is
fine, because of different
correlations.

Combining Profile Likelihoods
would give very large uncertainty
on dark energy fraction.

Supernova Cosmology Project

Amanullah, et al., Ap.J. (2010)
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NORMALISATION FOR LIKELIHOOD

'[P(x | 1) dx MUST be independent of p

[\

Data Param

[z =2t /N]
Exponential Distribution
INCORRECT P(”)=T€_”T
Missing 1/t
S T infinite
S T too large

T about right

19



QUOTING UPPER LIMIT

“We observed no significant signal, and our 90% conf
upper limitis .....”

Need to specify method e.g.
L
Chi-squared (data or theory error)
Frequentist (Central or upper limit)
Feldman-Cousins
Bayes with prior = const,

“Show your £°
1) Not always practical

2) Not sufficient for frequentist methods

20



90% C.L. Upper Limits

For Upper |ts

FOr 2 sided mterv/

21



AInL = -1/2 rule

If £(u) is Gaussian, following definitions of o are
equivalent:

1) RMS of £(u)
2) 1/N(-d2.L/dp?)
3) In(L(pe=0) = In(L(My)) -1/2

If £(u) is non-Gaussian, these are no longer the same

“Procedur ve still gives interval ains the
true value of para % probability”

Heinrich: CDF note 6438 (see CDF Statistics
Committee Web-page)

Barlow: Phystat05

22



Coverage g

i

* What it is: Hirve

For given statistical method applied to many sets of data to extract
confidence intervals for param [, coverage C is fraction of ranges that
contain true value of param. Can vary with p

* Does not apply to your data:
It is a property of the statistical method used

It is NOT a probability statement about whether .. lies in your
confidence range for p

C(n)
. . 68%
* Coverage plot for Poisson counting expt el coverage
\"
Observe n counts plot
Estimate . from maximum of likelihood ’

L(p) = etp"/n!  and range of p from  In{L(Mpe)/L(H)} < 0.5
For each p, calculate coverage C(p,.,.), and compare with nominal 68%



Coverage

Fraction of intervals containing true value
Property of method, not of result

Can vary with param

Frequentist concept. Built in to Neyman construction
Some Bayesians reject idea. Coverage not guaranteed
Integer data (Poisson) - discontinuities

|deal coverage plot

C D




COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with U

Study coverage of different methods of Poisson parameter L, from
observation of number of events n

-100%

< Nominal
Hope for: I value

C(u)

25



COVERAGE

If true for all #:  “correct coverage”

P< & forsome # “undercoverage’
(this is serious !)

P>« for some u “overcoverage”

Conservative

Loss of rejection
power

26



Coverage : £ approach (Neyman construction)

P(n,n) =e*u?/n! (Joel Heinrich CDF note 6438)
-2 InA< 1 A= P(n,n)/P(n,u,.,)  UNDERCOVERS

C
1.0

ool
048
06 e =

D5

04

D3 /

02

01

0.0
{]123455?891[}1112’131415151?18192{]“
Coverage (C) vs l: —2InA <1 (C — 0.6827 as |l — oo)



Neyman central intervals, NEVER undercover

(Conservative at both ends)
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Coverage (C) vs W: Classical Central Intervals (C — 0.6827 as L —» oo)
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Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers
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Probability ordering
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Bly? = (n-p)%/u Ay*=0.1 —— 24.8% coverage?
ENOT Neyman : Coverage = 0% > 100%

'
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Coverage (C) vs l: ¥* < 0.1 (C — 0.2482 as [l — =)



Unbinned £__. and Goodness of Fit?

maxXx

Find params by maximising £
So larger £ better than smaller £

So L., gives Goodness of Fit??

Bad Good? Great?
Monte Carlo distribution T l l l
F
of unbinned £,., = roaHeney
L —

max 32



Difference between £ and pdf

Not necessarily:
L(data,params)

fixed vary
Contrast pdf(data,params)
t t

vary fixed

e.g. p(A) = A exp(-At)

T Max att=0

param

pdf

{k

v

)\—P

data

Max at A=1/t

33



Example 1

Fit exponential to times t;, t, t5 ....... [ Joel Heinrich, CDF 5639 ]

£ = TUA exp(-At)

mL. .. =-N(1+ nt,)

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t  (except for........ )

(Average t is a sufficient statistic)

Variation of £,

in Monte Carlo is due to variations in samples’ averag?t , but
NOT TO BETTER OR WORSE FIT

1
—> pdf g

Same average t same £__. — \34




Example 2

dN  1+acos” 6

dcosd  1+a/3
_ 1+ocC0828i
'B_ H 1+a/3
;

cos 6

pdf (and likelihood) depends only on cos?6,

Insensitive to sign of cosB,

So data can be in very bad agreement with expected distribution
e.g. all data with cosf <0

and £___does not know about it.

max

Example of general principle 35



Example 3

Fit to Gaussian with variable p, fixed o

mL. .= N(-0.5 m21 — ho) — 0.5 Z(x, — X, )2 /02

max T T

constant ~variance(X)

i.e. £__. depends only on variance(x),

max

which is not relevant for fitting 4 = (Mggt = Xay)

Smaller than expected variance(x) results in larger £,

X—p X —p
LI111 ] L 11 |

Worse fit, larger £ Better fit, lower £

max max



L and Goodness of Fit?

max

Conclusion:

L has sensible properties with respect to parameters
NOT with respect to data

L within Monte Carlo peak is NECESSARY

not SUFFICIENT

max

(‘Necessary’ doesn’'t mean that you have to do it!)

37



Binned data and Goodness of Fit using £-ratio

ni\jél; L= H Pri(Hi)
\

A— Hi BbeSt :H pni(“i,best)

=H Pri(N;)

In[£L-ratio] = IN[£/L, (]

large p; -0.5%2 i.e. Goodness of Fit
L, . Is independent of parameters of fit,

and so same parameter values from £ or £-ratio

Baker and Cousins, NIM A221 (1984) 437

38



L and pdf

Example 1: Poisson

pdf = Probability density function for observing n, given p
P(n;u) =e * p"/n!

From this, construct £ as

L(u;n) =¢e Hpu/n! K
i.e. use same functionof pyandn,but | . .. . .. ... .pdf
for pdf, p is fixed, but T
for £, nis fixed U L
g] —>

N.B. P(n;p) exists only at integer non-negative n
L(u;n) exists only as continuous function of non-negative

39



Example 2  Lifetime distribution

pdf p(tA)= Le M

So  L(t)= Le ™ (single observed t)
Here both t and A are continuous

pdf maximises att=0

L maximises at A =t

N.B. Functional form of p(t) and £()) are different

T Fixed A T

Fixed t

40



Example 3: Gaussian

pdf(x;p) = exp{-(x-p)?/26?} /(cV2n)

L(u;x) = exp{-(x-p)?/26?} /(c\2n)

N.B. In this case, same functional form for pdf and £
So if you consider just Gaussians, can be confused between pdf and £

So examples 1 and 2 are useful

41



Transformation properties of pdf and £

Lifetime example: dn/dt =Ae M

Change observable fromt to y = vt
an an at ayl

= =2y\e
dy dt ay
So (a) pdf changes, BUT

(b) J‘f —dz‘ j —dy

l.e. corresponding integrals of pdf are
INVARIANT

42



Now for Likelihood

When parameter changes from A to t=1/A
(a’) £ does not change

dn/dt = (1/7) exp{-t/t}

and so £L(t;t) = L(A=1/1;t)

because identical numbers occur in evaluations of the two £’s

BUT
(b”)

So it 1s NOT meaningful to integrate £

(However,......... )

43



pdf(t;A) L(A;t)
Value of Changes when |INVARIANT wrt
function observable is transformation

transformed of parameter
Integral of INVARIANT wrt |Changes when
function transformation |param is

of observable |transformed
Conclusion Max prob Integrating £

density not very
sensible

not very

sensible w




CONCLUSION:

by
J‘ L dpb=a NOT recognised statistical procedure
Py
[Metric dependent:
T range agrees with 1

pred

A range inconsistent with 1/t ]

BUT
1) Could regard as “black box”
2) Make respectable by £ T—— > Bayes’ posterior

Posterior(L) ~ £(A)* Prior(}) [and Prior(A) can be constant]

45
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Getting L wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003
“Comments on £ fits with variable resolution”

Separate two close signals, when resolution o varies event
by event, and is different for 2 signals

e.g. 1) Signal 1 1+cos?0
Signal 2  Isotropic
and different parts of detector give different o

2) M (or )
Different numbers of tracks - different o,, (or o,)

47



Events characterised by x; and o,

A events centredonx =0

B events centred on x = 1

L(F)wrong = I [f* G(x;,0,0)) + (1-) * G(x;,1,6))]
L(f)rignt= I [[*p(x;,0,,A) + (1-1) * p(x;,06;;B)]

p(S,T) = p(S|T) * p(T)
p(x;,0;/A) = p(xilo;,A) * p(ci|A)
= G(x;,0,0)) * p(ci|A)
So
L(f) g = T[T * G(x,,0,6) * p(6]A) + (1-0) * G(x;,1,6) * p(oB)]

pr(G|A) p(G|B) right 'ewrong
but NOT otherwise

48



Punzi’s Monte Carlo for

Oa OB
1-0 1-0
1-0 1-1
1-0 2:0
12 1.5 23
1.0 1>2

A: G(x,0,0,)

B: G(x,1,0p)

f, =1/3
Lurong

fA Gy

0-336(3) 008
0374(4) 008
0645(6) 0-12
0514(7) 014
0.482(9) 0.09

Same
0-333(0) O
0-333(0) O
0-335(2) 003
0.333(0) O

1) Lyong OKfor p(c,) =p(cp) , but otherwise BIASSED

2) Lt Unbiassed, but £, biassed (enormously)!

3) Lignt gives smaller o;than £,



Explanation of Punzi bias

o= 1 Op= 2

k A events with o =1 /
o

ﬁ

/kntswithcj
X =2 X 2>

ACTUAL DISTRIBUTION FITTING FUNCTION

[N /Ny variable, but same for A and B events]
Fit gives upward bias for N,/Ng because (1) that is much better for A events; and 50

(1) it does not hurt too much for B events



Another scenario for Punzi problem: PID

A B m K
M — TOF .,
Originally:
Positions of peaks = constant K-peak - tr-peak at large momentum
o; variable, (6,), 7 (o)) o; ~ constant, Pk F Py

COMMON FEATURE: Separation/Error # Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf's do not

appearin £

51



Avoiding Punzi Bias

BASIC RULE:
Write pdf for ALL observables, in terms of parameters

 Include p(c|A) and p(o|B) in fit
(But then, for example, particle identification may be determined more
by momentum distribution than by PID)

OR

» Fit each range of o, separately, and add (N,),

>
(Na)iota, @nd similarly for B

Incorrect method using £,,,,, uses weighted average
of (fo);, assumed to be mdependent of j

Talk by Catastini at PHYSTATO05
52



What else can we do with £s?

So far mainly parameter determination (also
Baker & Cousins’ Goodness of Fit with Likelihood ratio)

Other possibilities:

Frequentist approach:

Construction of parameter confidence intervals
Likelihood ratios for comparing Hypotheses

Bayesian approach:
Together with priors = parameter credible intervals;
and Comparing Hypotheses

More in lectures by Olaf Behnke & Glen Cowan >3



BAYES and FREQUENTISM
The Return of an Old Controversy
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Parameter Determination

We need to make a statement about

Parameters, Given Data

The basic difference between the two:

Bayesian :  Prob(parameter, given data)
(an anathema to a Frequentist!)

Frequentist : Prob(data, given parameter)
(a likelihood function)

95



WHAT IS PROBABILITY?

MATHEMATICAL

Formal
Based on Axioms
FREQUENTIST

Ratio of frequencies as n-> infinity

Repeated “identical” trials
Not applicable to single event or physical constant
BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)
Varies from person to person ~ ***
Quantified by “fair bet”

Picture of Bayes

LEGAL PROBABILITY

56



Picture of Reverend Bayes

Maybe it isn’t Bayes?

“Probability that this is actually a picture of Bayes” is not Frequentist
probability.

“Probability of Bayes” is Bayesian probability.

57



BayeSian P(A,B) — P(B,?E;)P(A) Tanes’

p(param | data) a p(data | param) * p(param)

T T T

posterior likelihood prior

Problems: p(param) Has particular value
“Degree of belief”
Prior What functional form?

Coverage

58



P (Data;Theory) == P (Theory;Data)

(Example of P(A;B) 7 P(B;A) )



P (Data;Theory) = P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%

60



P (Data;Theory) = P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%

61



Classical Approach: Neyman Construction

Neyman “confidence interval” avoids pdf for u
Uses only P( x;u )
Confidence interval th - >

P( 41~ {>contains g )= True forany 4,

Varying intervals fixed
from ensemble of
experiments

Gives range of 1 for which observed value x,was “likely” (¢¢ )
Contrast Bayes : Degree of belief = & that g isin 6 - 1>
6

2



Classical (Neyman) Confidence Intervals

Uses only P(datal|theory)

7

T 5

Theoretical
Parameter 3

M

~=
-

b
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/
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5 6 7

=
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Observation x -

FIG. 1. A genedc confdence 'erl. nnnnn wruction and e sse, For each value of g, one draws

4 horisontnl seceplancs interml (g oq] such ibat Pia € [ag, 23] 0} = o Upon perfo Tming a8
experiment to measire = and hrsun ng the valie =g, ons draos the duabed vertical line umuﬁh
2y The confidence interval (41, 2] is the unlon of all walues of u for which the corrspomdin ne
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ﬂl < ﬂ Sﬂu at 90% confidence

Frequentist

Bayesian

/le and /Llu known, but random
IL[ unknown, but fixed
Probability statement about L& and L

/leand qu known, and fixed

AL unknown, and random
Probability/credible statement about lLl




Conclusions: What you now know

How it works, and how to estimate uncertainties
A(In £) = 0.5 rule and coverage

Several Parameters

Commbining Profile Ls loses information
Unbinned £ ., and Goodness of Fit

Intro to Bayes and Frequentism
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FINAL MESSAGE

You cannot become an expert on Statistics

by just reading books and listening to
lectures.

You have to work at it — solve lots of
problems, etc.

Best of luck with Statistics, and with your
research and enjoy this School!
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