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Topics
What it is

How it works: Resonance

Uncertainty estimates

Coverage

Several Parameters

Do’s and Dont’s with Likelihoods:
COMBINING PROFILE  LIKELIHOODS
NORMALISATION FOR LIKELIHOOD
(ln L) = 0.5 RULE
Lmax AND GOODNESS OF FIT

Bayes and Frequentism: What is Probability?
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• NORMALISATION FOR LIKELIHOOD

• JUST QUOTE UPPER LIMIT

• (ln L) = 0.5 RULE

• Lmax AND GOODNESS OF FIT

•

• BAYESIAN SMEARING OF L

• USE CORRECT L  (PUNZI EFFECT)

The picture can't be displayed.

DO’S AND DONT’S WITH L
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Simple example: Parameter for Angular distribution 

y = N (1 +  cos2)
yi = N (1 +  cos2i)

= probability density of observing i, given 
L() =  yi

= probability density of observing the data set yi, given 
Best estimate of  is that which maximises L

Values of  for which L is very small are ruled out
Precision of estimate for  comes from width of L distribution

CRUCIAL to normalise y           N = 1/{2(1 + /3)}
(Information about parameter  comes from shape of exptl distribution of cos)

cos  cos  

 = -1                    large                                   L
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How it works: Resonance

y ~               Γ/2

(m-M0)2 + (Γ/2)2

m                                                           m

Vary M
0

Vary Γ

Find overall optimum by allowing both to vary simultaneously
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Conventional to consider
l = ln(L) = Σ ln(yi)

For large N, L  Gaussian
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Maximum likelihood uncertainty

Range of likely values of param μ from width of L or l dists.
If L(μ) is Gaussian, following definitions of σ are equivalent:
1) RMS of L(µ)

2) 1/√(-d2lnL / dµ2) (Mnemonic)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2
If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 
true value of parameter μ with 68% probability”

Uncertainties from 3) usually asymmetric, and asym uncertainties are 
messy. So choose param sensibly 

e.g 1/p rather than p;       τ or λ
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Realistic analyses are more 
complicated than this

Lifetime Determination



10



11

SEVERAL PARAMETERS

PROFILE L
Lprof =L(β,νbest(β)),  where
β = param of interest
ν = nuisance param(s)
Uncertainty on β from 
decrease in ln(Lprof) by 0.5

1 param p       l = lnL
. p from dl/dp = 0   i.e from max of L

p
2 = 1/(-d2l/dp2)

Many dimensions   l(p1, p2,….)
p1, p2, from dl/dpi = 0  i.e. from max of L
For uncertainties, define 
Hij = d2l/dpi dpj = Inverse Covariance Matrix
Covariance Matrix Eij = (H-1)ij

Diagonal Elements for  variances off-diag for covariances

For many params:
N.B1 Ellipsoid with l=lmax -0.5 does 
not have 68% assymptotic
coverage.
N.B2 Uncert on x is not given by
varying x till l = lmax -0.5, while 
keeping all other params constant
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ML and EML

ML uses fixed (data) normalisation
EML has normalisation as parameter

Example 1:  Cosmic ray experiment 
See 96 protons     and    4 heavy nuclei 

ML estimate      96 ± 2% protons      4 ±2% heavy nuclei
EML estimate      96 ± 10 protons       4 ± 2 heavy nuclei

Example 2:  Decay of resonance
Use ML  for Branching Ratios
Use EML for Partial Decay Rates
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Extended Maximum Likelihood

Maximum Likelihood uses shape parameters
Extended Maximum Likelihood  uses shape and normalisation
i.e. EML uses prob of observing:

a) sample of N events;    and
b) given data distribution in x,…… 

 shape parameters and normalisation.

Example:   Angular distribution
Observe N events total               e.g  100

F forward                               96
B backward                              4

Rate estimates        ML EML
Total         --- 10010

Forward    962          9610
Backward    42             4 2
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• COMBINING PROFILE Ls

•NORMALISATION FOR LIKELIHOOD

• (ln L) = 0.5 RULE

• Lmax AND GOODNESS OF FIT

• PDFs and LIKELIHOODS

DO’S AND DONT’S WITH L



15



Danger of combining profile Ls

Experiments quote Likelihood, profiled over 
nuisance parameters, so that combinations can 
be performed.

Very simple ‘tracking’ example:

* No magnetic field

* 2-D fit of straight line y = a + bx
a = parameter of interest,  b = nuisance param

* Track hits in 2 subdetectors, each of 3 planes
16
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x

L2

L1

Lcomb

a

b

a

lnLprof

(a) (b)

(c)

L2L1

L1 L2

(a) Hits in 2 sub-detectors, each with 3 
planes 
(b)  Covariance ellipses  for separate fits L1

and L2, and combined Lcomb

(c) lnLprof as function of a, for all 3 lines
(d) bbest as a function of a 

bbest

a

(d)
L1 L2

N.B. bbest for L1 and L2 are the same

*** Combining Lprof for L1 and 
L2 loses a lot of information,  
and abest wrong ***** 17

y= a +b*x



COSMOLOGY EXAMPLE

Plot of dark energy fraction v  dark 
matter fraction by various methods. 
Each determines  dark energy 
fraction poorly, but combination is 
fine, because of different 
correlations.

Combining Profile Likelihoods 
would give very large uncertainty 
on dark energy fraction. 

18
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NORMALISATION FOR LIKELIHOOD

 dx )|P(x 

t

MUST be independent of 

Missing  1/

/)|(  -= tetPINCORRECT

 infinite

 too large

 about right

Data      Param

Exponential Distribution
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QUOTING UPPER LIMIT

“We observed no significant signal, and our 90% conf 
upper limit is …..”

Need to specify method   e.g.

L

Chi-squared (data or theory error)

Frequentist  (Central or upper limit)

Feldman-Cousins

Bayes with prior = const, 

“Show your L”

1) Not always practical

2) Not sufficient for frequentist methods 
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90% C.L. Upper Limits

x



x0

For Upper Limits

For 2-sided intervals
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ΔlnL = -1/2 rule
If L(μ) is Gaussian, following definitions of σ are 

equivalent:

1) RMS of L(µ)

2) 1/√(-d2L/dµ2)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2
If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 
true value of parameter μ with 68% probability”

Heinrich: CDF note 6438 (see CDF Statistics 
Committee Web-page)

Barlow: Phystat05



Coverage

* What it is:
For given statistical method applied to many sets of data to extract  
confidence intervals for param µ, coverage C is fraction of ranges that 
contain true value of param.      Can vary with µ

* Does not apply to your data:
It is a property of the statistical method used
It is NOT a probability statement about whether µtrue lies in your 
confidence range for µ

* Coverage plot for Poisson counting expt
Observe n counts
Estimate µbest from maximum of likelihood                               µ

L(µ) = e-µ µn/n!    and range of µ from   ln{L(µbest)/L(µ)}  0.5
For each µtrue calculate coverage C(µtrue), and compare with nominal 68%23

68%

C(µ)

μtrue μ

Ideal coverage 
plot



Coverage
Fraction of intervals containing true value
Property of method, not of result
Can vary with param
Frequentist concept.  Built in to Neyman construction
Some Bayesians reject idea. Coverage not guaranteed
Integer data (Poisson)  discontinuities

Ideal coverage plot

C

μ
24
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COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods of Poisson parameter  μ, from 
observation of number of events n

Hope for:
Nominal
value

100%



)(C
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COVERAGE

If true for all      :      “correct coverage” 

P<     for some        “undercoverage”                                
(this is serious !)

P>     for some        “overcoverage”  

Conservative

Loss of rejection 
power
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Coverage : L approach (Neyman construction)

P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438)

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS



28

Neyman central intervals, NEVER undercover

(Conservative at both ends)
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Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers
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Probability ordering

Frequentist, so NEVER undercovers
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χ2 = (n-µ)2/µ         Δ χ2 = 0.1              24.8% coverage?



NOT Neyman :  Coverage = 0%  100%
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Great?Good?Bad

Lmax

Frequency

Unbinned Lmax and Goodness of Fit?

Find params by maximising L

So larger L better than smaller L

So Lmax gives Goodness of Fit??

Monte Carlo distribution

of unbinned Lmax
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Not necessarily:                                                       pdf
L(data,params) 

fixed    vary
L

Contrast    pdf(data,params)                param

vary  fixed

e.g. p(λ) = λ exp(-λt)                                                                                    data

Max at t = 0                                                                                Max at λ=1/t
p L

t λ



Difference between L and pdf
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Example 1

Fit exponential to times t1, t2 ,t3 …….            [ Joel Heinrich, CDF 5639 ]

L =  π λ exp(-λti)

lnLmax = -N(1 + ln tav)

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t (except for……..)

(Average t is a sufficient statistic)

Variation of Lmax in Monte Carlo is due to variations in samples’ average t , but

NOT TO BETTER OR WORSE FIT

pdf

Same average t            same Lmax

t
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Example 2

L =

cos θ

pdf (and likelihood) depends only on cos2θi

Insensitive to sign of cosθi

So data can be in very bad agreement with expected distribution

e.g. all data with cosθ < 0 

and Lmax does not know about it.

Example of general principle

3/1

cos1

cos

2




=
d

dN

 


i
3/1

cos1 i
2
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Example 3

Fit to Gaussian with variable μ, fixed σ

lnLmax = N(-0.5 ln2π – lnσ) – 0.5 Σ(xi – xav)2 /σ2

constant           ~variance(x)

i.e. Lmax depends only on variance(x),

which is not relevant for fitting μ (μest = xav)

Smaller than expected variance(x) results in larger Lmax

x x

Worse fit, larger Lmax Better fit, lower Lmax

The picture can't be displayed.
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Lmax and Goodness of Fit?

Conclusion:

L has sensible properties with respect to parameters

NOT with respect to data

Lmax within Monte Carlo peak is NECESSARY

not SUFFICIENT

(‘Necessary’ doesn’t mean that you have to do it!)



38

Binned data and Goodness of Fit using L-ratio

 

i

iP ni
)(ni L =  

μi                                                         Lbest

x

ln[L-ratio] = ln[L/Lbest]

large μi -0.5c2 i.e. Goodness of Fit    

Lbest  is independent of parameters of fit,

and so same parameter values from L or L-ratio

Baker and Cousins, NIM A221 (1984) 437

)(

),(

i

i

n

i

nP

bestiP ni

i


=

=

pni(µi)

pni(µi,best)

pni(ni)
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L and pdf

Example 1: Poisson
pdf = Probability density function for observing n, given μ

P(n;μ) = e -μ μn/n!

From this, construct L as

L(μ;n) = e -μ μn/n!

i.e. use same function of μ and n, but            .  .  .  .  .  .  .  .  .  . pdf

for pdf, μ is fixed,   but

for L,    n is fixed                             μ L

n

N.B. P(n;μ) exists only at integer non-negative n

L(μ;n) exists only as continuous function of non-negative μ
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Example 2      Lifetime distribution

pdf     p(t;λ) = λ e - λt

So       L(λ;t) =  λ e –λt (single observed t)

Here both t and λ are continuous

pdf maximises at t = 0

L maximises at λ = t

N.B. Functional form of p(t) and L(λ) are different

Fixed λ Fixed t

p                                                                 L

t                                                                 λ
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Example 3:     Gaussian

N.B. In this case, same functional form for pdf and L

So if you consider just Gaussians, can be confused between pdf and L

So examples 1 and 2 are useful 

The picture can't be displayed.

The picture can't be displayed.

pdf(x;µ) = exp{-(x-µ)2/22} /(2)

L(µ;x)     = exp{-(x-µ)2/22} /(2)
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Transformation properties of pdf and L

Lifetime example:  dn/dt = λ e –λt

Change observable from t to y = √t

So (a) pdf changes, BUT
(b) 

i.e. corresponding integrals of pdf are 
INVARIANT

2
2 yey

dy

dt

dt

dn

dy

dn -==

dy
dy

dn
dt

dt

dn

tt 


=
00
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Now for Likelihood

When parameter changes from λ to τ = 1/λ

(a’) L does not change

dn/dt = (1/τ) exp{-t/τ}

and so L(τ;t)  =  L(λ=1/τ;t)

because identical numbers occur in evaluations of the two L’s

BUT

(b’) 

So it is NOT meaningful to integrate L

(However,………)

The picture can't be displayed.
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pdf(t;λ) L(λ;t)

Value of 
function

Changes when 
observable is 
transformed

INVARIANT wrt 
transformation 
of parameter

Integral of 
function

INVARIANT wrt 
transformation 
of observable

Changes when 
param is 
transformed

Conclusion Max prob 
density not very 
sensible

Integrating L
not very 
sensible
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CONCLUSION:

NOT recognised statistical procedure

[Metric dependent:

τ range agrees with τpred

λ range inconsistent with 1/τpred ]

BUT

1) Could regard as “black box”

2) Make respectable by L                Bayes’ posterior 

Posterior(λ) ~ L(λ)* Prior(λ)             [and Prior(λ) can be constant]

 =
u

l

p

p

dpL
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Getting L wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003
“Comments on L fits with variable resolution”

Separate two close signals, when resolution σ varies event 
by event, and is different for 2 signals

e.g. 1) Signal 1     1+cos2θ
Signal 2      Isotropic
and different parts of detector give different σ

2) M (or τ)
Different numbers of tracks  different σM (or στ)
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Events characterised by xi and σi

A events centred on x = 0

B events centred on x = 1

L(f)wrong = Π [f * G(xi,0,σi) + (1-f) * G(xi,1,σi)]

L(f)right = Π [f*p(xi,σi;A) + (1-f) * p(xi,σi;B)]

p(S,T) = p(S|T) * p(T)

p(xi,σi|A) = p(xi|σi,A) * p(σi|A)

= G(xi,0,σi) * p(σi|A)

So

L(f)right = Π[f * G(xi,0,σi) * p(σi|A) + (1-f) * G(xi,1,σi) * p(σi|B)]

If p(σ|A) = p(σ|B), Lright = Lwrong

but NOT otherwise
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Punzi’s Monte Carlo for             A :  G(x,0,A)

B :  G(x,1,B)

fA = 1/3 

Lwrong                                         Lright         

A B                                           fA f fA f 

1.0               1.0                    0.336(3)    0.08             Same

1.0 1.1                    0.374(4)    0.08 0. 333(0)    0

 1.0 2.0 0.645(6)    0.12 0.333(0) 0

 1  2        1.5 3                 0.514(7)    0.14             0.335(2)   0.03

 1.0            1  2                 0.482(9)    0.09             0.333(0)    0

 1)  Lwrong   OK for  p(A) = p(B) , but otherwise BIASSED

 2)  Lright unbiassed, but  Lwrong biassed  (enormously)!

 3)  Lright gives smaller σf than Lwrong
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Explanation of Punzi bias

σA = 1 σB = 2

A events with σ = 1

B events with σ = 2

x   x 

ACTUAL DISTRIBUTION                             FITTING FUNCTION

[NA/NB variable, but same for A and B events]

Fit gives upward bias for NA/NB because  (i) that is much better for A events; and 

(ii) it does not hurt too much for B events  
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Another scenario for Punzi problem: PID
A      B                                       π K

M                                            TOF

Originally:

Positions of peaks = constant K-peak  π-peak at large momentum

σi variable,   (σi)A  =  (σi)B σi ~ constant,    pK =  pπ

COMMON FEATURE: Separation/Error = Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf’s do not 

appear in L
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Avoiding Punzi Bias

BASIC RULE:
Write pdf for ALL observables, in terms of parameters

• Include p(σ|A) and p(σ|B) in fit
(But then, for example, particle identification may be determined more 
by momentum distribution than by PID)

OR
• Fit each range of σi separately, and add (NA)i

(NA)total, and similarly for B

Incorrect method using Lwrong uses weighted average 
of (fA)j, assumed to be independent of j 

Talk by Catastini at PHYSTAT05



What else can we do with Ls? 
So far mainly parameter determination (also 

Baker & Cousins’ Goodness of Fit with Likelihood ratio)

Other possibilities:

Frequentist approach:

Construction of parameter confidence intervals

Likelihood ratios for comparing Hypotheses 

Bayesian approach:

Together with priors  parameter credible intervals; 

and Comparing Hypotheses

More in lectures by Olaf Behnke & Glen Cowan 53



BAYES and FREQUENTISM
The Return of an Old Controversy

54
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Parameter Determination

We need to make a statement about

Parameters, Given Data

The basic difference between the two:

Bayesian :      Prob(parameter, given data)
(an anathema to a Frequentist!)

Frequentist :   Prob(data, given parameter)
(a likelihood function)
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WHAT IS PROBABILITY?
MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as  n infinity

Repeated “identical” trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)

Varies from person to person      ***

Quantified by “fair bet”  

Picture of Bayes

LEGAL PROBABILITY
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Picture of Reverend Bayes

Maybe it isn’t Bayes?

“Probability that this is actually a picture of Bayes”  is not Frequentist 
probability.

“Probability of Bayes” is Bayesian probability.



58

)(

)( x );(
);(

BP

APABP
BAP =Bayesian

  
posterior likelihood prior

Problems:   p(param) Has particular value

“Degree of belief”

Prior  What functional form?

Coverage

Bayes’ 
Theorem

p(param | data)  α p(data | param) * p(param)
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P (Data;Theory)         P (Theory;Data)

(Example of P(A;B)      P(B;A) )




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P (Data;Theory)         P (Theory;Data)

Theory  =  male or female

Data     =   pregnant or not pregnant

P (pregnant ; female) ~ 3%
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P (Data;Theory)         P (Theory;Data)

Theory  =   male or female

Data      =   pregnant or not pregnant

P (pregnant ; female) ~ 3%

but

P (female ; pregnant) >>>3%
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Classical Approach: Neyman Construction

Neyman “confidence interval” avoids pdf  for

Uses only  P( x;    )
Confidence interval :21  

P(              contains t ) =  21     True for any    t

Varying intervals 
from ensemble of 
experiments

fixed

Gives range of     for which observed value     was “likely” (    ) 
Contrast Bayes : Degree of belief =                  is in t that  21  



0x



63

μ≥0 No prior for μ

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)

Theoretical
Parameter

µ

Observation x 
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ul    at 90% confidence

and          known, but random

unknown, but fixed 

Probability statement about         and

Frequentist l u
l u

Bayesian
l u






and          known, and fixed

unknown, and random 
Probability/credible statement about 
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Conclusions: What you now know

How it works, and how to estimate uncertainties

(ln L) = 0.5 rule and coverage

Several Parameters

Commbining Profile Ls loses information

Unbinned Lmax and Goodness of Fit

Intro to Bayes and Frequentism



FINAL MESSAGE

66

You cannot become an expert on Statistics 
by just reading books and listening to 
lectures.
You have to work at it – solve lots of 
problems, etc.

Best of luck with Statistics, and with your 
research and enjoy this School! 


