Track reconstruction of charged particles using a 4D quantum algorithm

Arianna Crippa^{1,2}, Lena Funcke³, Tobias Hartung⁴, Beate Heinemann^{1,5}, Karl Jansen¹, Annabel Kropf^{1,5}, Stefan Kühn¹, Federico Meloni¹, **David Spataro**^{1,5}, Cenk Tüysüz^{1,2}, Yee Chinn Yap¹

DPG Spring Meeting, Dresden 21.3.2023

¹ Deutsches Elektronen Synchrotron DESY
² Humboldt-Universität zu Berlin
³ Universität Bonn

⁴ Northeastern University, London

⁵ Albert-Ludwigs-Universität Freiburg

Track reconstruction

Why it is important

- Extract physics properties from particle tracks
- Allows for projection to or through other detectors, e.g Calorimeter, Cherenkov Detector
- \rightarrow Identify secondary decays
- \rightarrow Reconstruct whole events

Challenges:

- a) Find single signal tracks in a huge background
- b) Match tracks to hits in high occupancy regions

Source: LUXE CDR

LUXE positron detection system

Source: cerncourier, Credit: D Lucchesi et al

Higgs decay in the Muon Collider

Encoding detector data into patterns

Doublet

Encoding detector data into patterns

Xplets as elementary patterns:

• Doublets

Encoding detector data into patterns

Xplets as elementary patterns:

- Doublets
- Triplets

Encoding detector data into patterns

Xplets as elementary patterns:

- Doublets
- Triplets
- Quadruplets

Х

Encoding detector data into patterns

Xplets as elementary patterns:

- Doublets
- Triplets
- Quadruplets

Forming Xplets is a purely combinatorial task

 \rightarrow computationally costly for a high number of particles

Goal: Identify Xplet patterns stemming from a single particle

QUBO - Quadratic Unconstrained Binary Optimisation

The positive twin of the Ising model

Hamiltonian formulation for the system:

- Quality a_i of a triplet
- Interaction b_{ii} with other triplets

with $T_i \in \{0, 1\}$ as binary triplet representation

Goal: Minimise the Hamiltonian

 \rightarrow Binary vector as result with 1 for keeping

and 0 for discarding a triplet

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i$$
 (QUBO)

VQE - Minimising the QUBO

Hybrid classical-quantum algorithm

Track reconstruction challenges in LUXE

Positron detection system

Four layered tracking system, based on ALPIDE silicon pixel sensor, 27 x 29 μm^2 pixel size

Expect 10^{-3} to 10^{6} positrons per BX, background O(10³), no magnetic field in tracking system

Challenges:

- a) Track reconstruction at high occupancy
- b) Find single positron tracks in dominant background

Tomorrow at 11am by Ruth Jacobs: LUXE – A new experiment to study non-perturbative QED in electron-laser and photon-laser collisions

Performance

Track level efficiency and fake rate

Approx number of positrons:

- ξ=3: 140 e⁺
- ξ=4: 2,100 e⁺
- ξ=5: 10,500 e⁺
- ξ=6: 31,000 e⁺
- ξ=7: 67,000 e⁺

Tracking challenges in Muon Colliders

Muon Collider

Muon decays result in secondary and tertiary particles (*Beam-Induced-Background*):

- electrons
- synchrotron radiation
- hadrons produced by photo-nuclear interactions

Also: magnetic field in tracking region

Challenge: Find single signal tracks in a huge background

Detector hits time information

Time information as separation power

Time resolution:

- Vertex Tracker : 30ps
- Inner + Outer Tracker: 60ps

Natural approach: use time information to veto detector hits.

Idea: Xplet pattern building with respect to time information + include time to set QUBO coefficients a_i and b_{ij}

Muon Collider Setup

Find a single muon event in a huge background

Single muons from a particle gun

time [ns]

Approx. 10% of the expected background

4D QUBO tracking

Time-dependent pre-selection

Discard doublets if the hits are not in a certain time window (ToF_{photon} $\pm 2\sigma$ time resolution)

- \rightarrow Less doublets
- \rightarrow Less triplets
- \rightarrow Less computational costs in the optimisation process

Adding time information to the existing geometrical preselection reduces number of triplets by an additional 30%!

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

Not yet implemented: Use time information to set QUBO coefficients

4D QUBO tracking

Let's find the the muon tracks!

Muon Energy [GeV]	Reconstruction efficiency
1	60%
10	90%
100	70%
1000	80%

y [mm]

Summary and next steps

Adding time information to the QUBO enables 4D track reconstruction with quantum algorithms

Including time information reduces computational costs

Next steps are:

- a) Include time information to set QUBO parameters
- b) Approach full background usage

Thank you!

Bonus: VQE result from a real quantum computer

Calculations on a quantum device are noisy:

- \rightarrow Error mitigation
- \rightarrow Error correction

10 shots (number of circuit evaluations) sufficient for 99% success rate

