Scanning the CMSSM parameter space considering H.E.S.S. data

Joachim Ripken, Pat Scott, Jan Conrad

- Motivation
- •Methods
- •Comparison of H.E.S.S. Data with models
- •The Galactic Center
- •The Sagittarius dwarf galaxy
- •Summary and outlook

Motivation

Perform a CMSSM parameter scan taking H.E.S.S. results into account

Using SuperBayes with MultiNest scanning algorithm, because

- •Random scan not adequate for large number of dimensions in parameter space
- •Nuisance parameter (e.g. top mass) marginalized and not fixed
- •Scan together with other experimental observables (e.g. relic density...)
- •Use physical annihilation branching ratios and annihilation spectra (using DarkSUSY) and not a priori assumptions

Second time use >GeV data in such scans

SuperBayes

(see http://www.ft.uam.es/personal/rruiz/superbayes/)

- Program providing several scanning algorithms
- Varying all parameters (also nuisance parameters in SM like t-mass within errors)
- Need routine(s) for individual likelihoods of theoretical calculated observables compared to experiments
- RGE solution and observable calculation with DarkSUSY
- Get maps about likelihood of models
- We used Multimodal nested sampling method so far (see arXiv:0704.3704)
- Program with γ -ray observations already used with Fermi observations of Segue 1 (see arXiv:0909:3300)

Nested sampling Algorithm

- Distribute *N* "living" points in parameter space (flat prior probability distribution)
- Calculate likelihood L for each point
- Remove point with lowest likelihood L_0 and replace by point with $L>L_0$

(several algorithms possible to find one in an effective way)

- Repeat thes steps iteratively
- => Reductions of parameter space
- Algorithm scan parameter space by going through nested isolikelihood shells
- Removed points deliver information about posterior probability distribution
- Other algorithms accessible
- In Stockholm knowledge about Genetic Algorithms (see arXiv:0910.3950)

Compare models with H.E.S.S. data

•Calculate DM annihilation fraction

•If necessary: Fit astrophysical background to minimize χ^2 of sum •Calculate Likelihood (-In L = $\chi^2/2$)

H.E.S.S. GC data and SuperBayes

No H.E.S.S. data

H.E.S.S. Limits on DM in Sgr dwarf

- 12 h of observation time
- •No signal detected

Upper limit of annihilation cross section calculated for two different scenarios, but generic spectrum
Limits begin to cut in interesting parameter space

•N_{ON} = 437, N_{OFF} = 4270, N_{excess} = 14.2
N_{95%} = 56
→ Flux upper limit:
$$\Phi_{_{95\%}}$$
(E>250 GeV) < 3.6 x 10⁻¹² cm⁻² s⁻¹

 \rightarrow or Φ = (0.9 +- 1.9) x 10⁻¹² cm⁻²s⁻¹ using gaussian likelihood

H.E.S.S. Limits on DM in Sgr dwarf

Coannihilation region looses likelihood

Summary and Outlook

Implement algorithms into SuperBayes in order to consider H.E.S.S. Data
Results for GC with unrealistic high density profile

- •Interesting results for Sgr dwarf galaxy (already published)
 - Coannihilation region disfavored

•Consider observations on more DM related objects (open for suggestions)