

IDMS 2011 Indirect Dark Matter Searches 2011

Enrico Borriello

University of Naples "Federico II" & SFB Fellow at DESY

Based on Borriello, Maccione, and Cuoco arXiv:10120041

DM galactic substructures N-body simulations

Diemand et al. arXiv:0805.1244 Springer at al. arXiv:0809.0898

800 kpc³

Hamburg - June 15th, 2011

10⁴ M Aquarius

DM galactic substructures

Detectability at γ -rays energies

Pieri et al. arXiv:arXiv:0908.0195

DM particle: Neutralino DM mass: 40 GeV Annihilation rate: 3×10^{-26} cm³ s⁻¹ Energy treshold: 3 GeV Annihilation channel: $\chi + \chi \rightarrow b$ quarks $\rightarrow \pi^0 \rightarrow \gamma + \gamma$

Full sky map of the number of photons produced by DM annihilation

Observable clumps:

Via Lactea II 9.2 \pm 2.6 at 3 σ

E. Borriello

Hamburg - June 15th, 2011

DM galactic substructures

Detectability at radio wavelenghts

Borriello et al. arXiv:arXiv:0809.2990

Clumps from 10⁷ to 10¹⁰ $M_{\rm sun}$

flux density (GeV cm⁻² s^{-1} Hz⁻¹) $10^{-18} \bigcirc 10^{-21} \odot 10^{-24} \circ 10^{-27}$ At $v \approx 23$ GHz (1st WMAP band) the flux is order 10⁻²³ GeV cm⁻²s⁻¹Hz⁻¹ (100 GeV $\tilde{\chi}_1$)

 e^{\pm} diffuse in a ~1 kpc radius sphere:

 $\Omega \sim 0.1 \text{ sr}$ (d ~ 5 kpc)

 $Flux/\Omega \sim 10^{-22} \text{ GeV cm}^{-2} \text{s}^{-1} \text{Hz}^{-1} \text{sr}^{-1}$

Experiment	Sensitivity			
	GeV cm ⁻² s ⁻¹ Hz ⁻¹ sr ⁻¹			
WMAP	10-18			
ALMA	10 ⁻¹⁹			

Electron and positron flux

Pato, Lattanzi & Bertone arXiv: 1010.5236

					and the state of the second of the	
benchmark	Γ	E_{cut} [GeV]	N_1^{50}	N_1^{99}	N_2	N_3
DM1	1.3	1000	0	0	5	3
DM1	1.5	1000	0	0	5	5
DM1	1.7	1000	0	0	5	3
DM1	1.9	1000	0	0	1	1
		the second s	A REAL PROPERTY AND A REAL PROPERTY AND A			

ANTF and Fermi-LAT catalogues

It is always possible to find suitable pulsars that produce an electronpositron spectrum compatible, within the experimental uncertainties, with one produced by DM (an vice-versa).

Why electron anisotropy could be better?

A lot of uncertainty affects every attempt to detect the DM

Its **nature** (mass, rate of annihilation or decay, etc.)

Spiked or cored galactic mass **density** profile?

Smooth or clumpy distribution

etc...

 $\delta_{DM} = \frac{3 D(E)}{v} \frac{|\nabla \phi_{DM}|}{\phi_{DM}}$

DM electron intrinsic anisotropy is defined in terms of a ratio in which the two term vary in a coherent way with respect to integrated unknowns. Any multiplicative factors is simplified.

Electrons and positrons can travel only few kpc. Almost no difference among spiked and cored profiles

Limit cases

 $\delta_{\min} \leq \delta \leq \delta_{\max}$

Intrinsic degree of anisotropy:

$$\delta_i = \frac{3D}{v} \frac{|\vec{\nabla} \phi_i|}{\phi_i}$$

$$\delta_{\min_{max}} = \left\| \left(1 - \frac{\Phi_{DM}}{\Phi_{TOT}} \right) \delta_{AS} \mp \frac{\Phi_{DM}}{\Phi_{TOT}} \delta_{DM} \right\|$$

 $\vec{\delta} = \frac{3D}{c} \frac{\nabla(\phi_{AS} + \phi_{DM})}{\phi_{AS} + \phi_{DM}}$

Standard assumptions about UHECR: e⁻ accelerated by SNR, secondary e⁺

The shielding flux from small substructures prevents unreasonably high values of the Anisotropy.

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Hamburg - June 15th, 2011

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Hamburg - June 15th, 2011

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Universality of the DM electron anisotropy upper limit

Borriello et al. arXiv:arXiv:1012.0041

Hamburg - June 15th, 2011

AP anisotropy dominated scenario

Excluding the DM interpretation of a forthcoming anisotropy detection

AP anisotropy dominated scenario

Di Bernardo et al. ArXiv:1010.0174

$$\delta_{AP} > \delta_{DM}$$

Nearby pulsars (within 2 kpc, KRA diffusion setup) contribution is able to explain the excess seen by Fermi LAT with respect to a standard electron and positron astrophysical background.

The same model is able to perfectly reproduce the **positron fraction** observed by Pamela.

The associ_ ated electron anisotropy would be on the verge of being dete_ cted by Fermi LAT.

Hamburg - June 15th, 2011

Excluding the DM interpretation of a forthcoming anisotropy detection

Excluding the DM interpretation of a forthcoming anisotropy detection

Excluding the DM interpretation of a forthcoming anisotropy detection

Conclusions:

- Dipole anisotropy can exceed the DM intrinsic upper limit only thanks to the contribution of non-standard astrophy_ sical sources.
- If a detection will be made by Fermi LAT in the next ten years, then this argument could be used as a criterion to deduce the presence of exotic astrophysical sources.

 Electron anisotropy can be use as a tool to rule out a dominant DM cotribution to the flux.

Thank you for your attention!

DM anisotropy contributed by substructures in different mass ranges for 100 different realizations.

