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CDM particles as thermal relics

The WIMP recipe to embed a dark matter candidate in a SM extension:
foresee an extra particle X that is stable (or with lifetime exceeding the age
of the Universe), massive (non-relativistic at freeze-out) and weakly
interacting.
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This production mechanism indicates the route to address the coupling of
DM with ordinary matter, and hence how to search for DM.
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WIMP coupling to ordinary matter
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Indirect detection of WIMP dark matter

The chance of detection stems from the WIMP paradigm itself:

. X Focus on:
Pair \ / lighter \ 4 :
A e M stable antlprotons,
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WIMP DM source function:
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Definite patterns linking WIMP source functions

E.g.: the e*and v yields have in most cases analogous spectral
features:

E dY/dE

z:E"-.I

energy/\Y/' IMP mass

dY”’

dl%i (E) from 7~ decays
dY/)

dL; (E) from7" decays

twin processes with comparable
relative multiplicities in both
hard (e.g. T T ) and soft (e.g.

b b) 2-body annihilation channels

For leptophilic models annihilating into " or € €7, final state
radiation (FSR) is very important: the v yield is suppressed but
peaks at the threshold, a very important spectral feature.



Definite patterns linking WIMP source functions

If kinematically allowed, the p yield plays always a major role.

E.g.: for the W W final state, about 4% of the total energy
released goes into p, as opposed to about 18% going into e”. On
the other hand, in general, the signal to background ratio in the
p searches is much larger than than for CR leptons.
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the other hand, in general, the signal to background ratio in the
p searches is much larger than than for CR leptons.

leptophilic — ;; at i = 3000 Gev «— WIMP mass
Even for leptophilic 10
models, designed to :
prevent large p yields, in
case of heavy WIMPS,
there is a non-negligible
p component due to
radiative emission of
EW gauge bosons.

dN/dInE

E in GeV

Ciafaloni et al., arXiv: 1009.0224

solid: with EW corrections

dashed: without



To be or not to be ... leptophilic

The focus on leptophilic models driven the CR lepton puzzle:

PAMELA 2008 Fermi 2009
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The focus on leptophilic models driven the CR lepton puzzle:
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To be or not to be ... leptophilic

The focus on leptophilic models driven the CR lepton puzzle:

PAMELA 2008 Fermi 2009
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these data (most probably) cannot be fitted assuming positrons are
secondary CRs generated by primary CRs during propagation.



To be or not to be ... leptophilic
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match the standard background. e T
kinetic energy [GeV]
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However: there are viable astrophysical sources of primary
positrons (e.g. pulsars), as well as the production of secondary
species may take place within the CR sources (SNRs).
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However: there are viable astrophysical sources of primary
positrons (e.g. pulsars), as well as the production of secondary
species may take place within the CR sources (SNRs).

Also: in the CR leptons we may have seen a DM signal, but
definitely have not identified a DM signature. The DM
interpretation might be disproved by finding a spatial anisotropy
or spectral features connected to individual sources (in case they

are not DM clumps): possible with CALET or PEBS?



Multi-wavelength signals from WIMP DM

Having identified DM annihilations as a copious source of non-
thermal electrons (even when DM is not leptophilic), there are
potentially signals associated to the radiative emissions of such
electrons on ambient backgrounds and fields, such as starlight,

CMB, gas and magnetic fields:

synchrotron inv. Compton [onization

‘—__ —

.Coulomb bremsstrahlung
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Having identified DM annihilations as a copious source of non-
thermal electrons (even when DM is not leptophilic), there are
potentially signals associated to the radiative emissions of such
electrons on ambient backgrounds and fields, such as starlight,

CMB, gas and magnetic fields:

synchrotron inv. Compton lonization
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hd

A flux extending over 10 decades in energy, from the radio to

the gamma-ray bands, stemming from a single energy scale,
the WIMP mass




Multi-wavelength DM targets

It looks feasible to correlate the DM emissivities in e.g.:

® objects with large DM densities and well-measured SEDs,

e.g.: the Galactic center & galaxy clusters; e.g.: Gondolo,

2000; Bertone, Sigl & Silk, 2001; Aloisio, Blasi & Olinto, 2004; Bergstrom
et al, 2006; Colafrancesco & Mele, 2000; Totani, 2004;

® objects with well-understood standard astrophysical
backgrounds, e.g.: the Galactic emission at intermediate and

high galactic latitudes (???); e.g.: Borriello, Cuoco & Miele, 2008 &
2009; Hooper et al., 2008; Cirelli, Panci & Serpico, 2009;

® objects with very suppressed backgrounds from standard

astrophysical sources, e.g.: , the LMC (?); e.g.:
Colafrancesco, Profumo & P.U., 2007; Jeltema & Profumo, 2008;
Siffert et al., 2010.

Other studies are more subtle, such as for the WMAP and

Fermi haze/bubbles, e.g.: Finkbeiner, 2004; Hooper, Finkbeiner &

Dobler, 2007; Cholis, Goodenough & Weiner, 2009; Goodenough &
Hooper, 2009; Su, Slayter & Finkbeiner, 2010.

Apologies for the very incomplete list of references



A sample “easy” target: the Coma cluster

Good fits of the radio halo can be obtained with a WIMP
annihilating into a soft channel, adjusting the WIMP mass and the
annihilation rates (generally larger than for thermal relics)
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For such DM model, the multi-wavelength SED corresponding to
the sample model (NOTE: it is just a sample case) fitting the radio
halo has an inverse Compton component (on the CMB)
undershooting the UV ad X-ray emission in Coma,

[a—
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The assumption on the magnetic field is the most critical in this

analysis: the inferred properties of the WIMP change accordingly!

Assume a few sample value for

the mean B and adjust mass
and ov to the radio halo:
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The assumption on the magnetic field is the most critical in this

analysis: the inferred properties of the WIMP change accordingly!

Assume a few sample value for

the mean B and adjust mass
and ov to the radio halo:
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Fermi has searched for the y-ray emission from nearby clusters and
set upper limits: The Fermi LAT collaboration, arXiv:1002.2239
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Recent reanalysis including also the IC y-ray emissivity of
electrons from dust and starlight:
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Another eftfect one should consider: the heating produced by the
DM annihilation yields can be larger than the intracluster gas
cooling rate. Back to the case of Coma and assuming again the
synchrotron component at the radio halo level, adjusting B:

. bremsstrahlung
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What about tracing WIMPs in clusters through the
Sunyaev-Zel’'dovich effect? Colafrancesco 2004

SZ: Compton scattering of CMB photons on the electron/positron
populations in clusters. Net effect: low energy photons are “heated up”,
hence there is a low frequency decrement and high frequency increment in
the CMB spectrum. A large SZ effect is expected (and detected) in
connection to the thermal gas in clusters, it may be hard to fight against
this “background” in standard system:s.

What about in a
system like the Bullet
cluster, with recent

__.\_'
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Lensing map

. superimposed
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Clove et al., 2006



SZ. eftect in the simplified picture with two spherical DM halos
(NFW profile) plus two isothermal gas components of given
temperature (shock front neglected):

Main Cluster Subcluster
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SZ. eftect in the simplified picture with two spherical DM halos
(NFW profile) plus two isothermal gas components of given
temperature (shock front neglected):
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Dec (deg)

SZ map at 150 GHz:

SZ @ 150GHz M,=20GeV FWHM=50" AT (MK)
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SZ map at 350 GHz:

SZ @ 350GHz M,=20GeV FWHM=22" AT (MK)
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A hght WIMP say 20 GeV g1ves
a detectable (though small) effect:

SZ @ 223GHz M,=20GeV FWHM=35" AT (MK)
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A light WIMP, say 20 GeV, gives
a detectable (though small) effect:
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... fading away for heavier

WIMPs, say 40 GeV,
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A sample “tough” multifrequency target: the GC

A BH source with unusually low luminosity over the whole spectrum, at
such a level that it is plausible for an exotic component, e.g. WIMP
component, may be relevant!

Multi-wavelength SED of Sgr A* in quiescent stage:
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WIMP annihilations are expected to give a radio signal which is
wider than the width of the source (and hence of the y-ray

flux), while the X-ray signal (synchrotron on the very large B in
the most inner region) is much smaller:
smoothed by gaussian
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NEW + “Bertone & Merritt”

Multi-wavelength limits in the plane
WIMP mass - annihilation cross-section
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Analogously, looking at a slightly larger angular region, allowing for
larger magnetic fields + assuming a bare NFW, one can extrapolate

the limits: Crocker et al., 2010
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Analogously, looking at a slightly larger angular region, allowing for
larger magnetic fields + assuming a bare NFW, one can extrapolate

the limits: Crocker et al., 2010
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WMAP haze & FERMI haze/bubbles

An extra component of CR leptons seems also needed to account
for the emissivity in the central region of the Galaxy on a much
larger angular scale. This extra component was claimed to be
identified in WMAP data and later confirmed in Fermi:
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WMAP haze & FERMI haze/bubbles

Assuming a prolate
halo & anisotropic
diffusion, the
FERMI & WMAP
hazes can be fitted
within a leptophilic
model with mass of

1.2 'TeV and BF of 30:

Dobler, Cholis &
Weilner, 2011

Galactic latitude

Intensity (keV cm?s™

o
~

o
o
T

3 templates haze (2.0-5.0 GeV)

o
=}

0
Galactic longitude
v T
Fermih 4 GeV 20
I\— -- GALPROI tropi del
Fo
I
I
BF =24 R S
M,=12TeV HRRES!
| XDMe'e I
02 1 L N L :
20 40 60 80

Distance south of GC [deg]

]

Intensity [GeV cm® s sr

1 o-é T

107

Fermi Haze Spectrum

,-50" <b < -10" (dark
l1<20°, 10°<b < 507 {light

XDM e'e’, BF =24

2
-~~~ GP ISRF model 3

grey) |
grey)

| 1
10 100
Energy [GeV]

1000

WMAP haze, K-band, lll < eg
---- GALPROP anisotropic model

++H =

raaleos
10

PN A 1 " L
20 30 40

Distance south of GC [deg]

50

Caveats: different templates give different morphologies (haze or
bubbles?), the edges are rather sharp for a DM component.

Also: there are several contenders to this explanation, both in
terms of additional astrophysical sources and of variants to the

electron propagation or acceleration model.



Singling out DM in the central region of the Galaxy (low up to,
maybe, intermediate latitudes) may remain problematic even in
the future. Predictions for the background rely on severe
extrapolations, such as on :

- the radial (vertical ?) distribution of sources (the same as the
local sources?) which is very poorly known towards the GC;

- the diffusion and reacceleration terms (in most cases assumed
spatially constant, ignoring the observed pattern of magnetic
fields on large scales, and probably some structure in the
turbulent component as well);

- the interstellar medium, again poorly determined in the central

region of the Galaxy;

Even the DM source function is rather uncertain since we do
not know (after the baryon infall) whether the density of

WIMP DM is Einasto-like (NFW-like) or cored. It will be vital
to identify a clean DM spectral and/or morphological signature.



Multi-messenger approach to local DM signals

Local observations compared to backgrounds as estimated from
local observables are probably much safer. At the same time:

The local DM density is determined with good accuracy by
dynamical constraints. Assuming a spherical halo, one finds:
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Multi-messenger approach to local DM signals

Local observations compared to backgrounds as estimated from
local observables are probably much safer. At the same time:

The local DM density is determined with good accuracy by
dynamical constraints. Assuming a spherical halo, one finds:
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Multi-messenger approach to local DM signals

Local observations compared to backgrounds as estimated from
local observables are probably much safer. At the same time:

The local DM density is determined with good accuracy by
dynamical constraints. Assuming a spherical halo, one finds:
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The input from the locally measured proton and helium spectra
and the ratio of secondary to primary nuclei is sufficient for a
fairly accurate prediction of the antiproton background:
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Analogous to what shown yesterday with Galprop or Usine.



Use the background information to extrapolate limits on DM
models contributing to the local antiproton flux. E.g.:

non-thermal light DM leptophilic
WINO motivated by DD heavy DM
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Extra input from the locally measured electron and positron
spectra (plus some assumptions on gas and IRF) and prediction of
the high-latitude gamma-ray background:
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Again very good agreement with
data. Results for the reference
Kraichnan model, the other cases are
analogous, still with fairly good fits.
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to appear



Galactic diffuse y-rays and the e’/ e CR puzzle

Fermi should contribute to address the issue of whether the local positron
excess is due to primary sources located in the disc or to a leptophilic DM
component distributed in a much thicker halo:
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obtained with Galprop
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sketch for other models is
perfectly analogous.
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A prediction for the IC term (plus final state radiation or pion decay
terms) for two sample (Ieptophilic) models fitting the Pamela excess in the

positron ratio:
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a prediction independent on
propagation at high latitudes

Note also: the prediction is insensitive to the halo model (since it is well
away from the GC), and to whether it is related to decaying or annihilating
DM (since it is normalized to the locally measured electron/positron flux)



Conclusions

There are definite patterns in the source functions for
the different species generated in WIMP DM
annihilations; hence, correlations among the different
indirect detection signals are expected.

Several examples for which the multi-wavelength /

multi-messenger approach to DM detection is at hand
and very powerful.

The issue of discriminating the signal from background
contaminations is a delicate one, however the approach
combining different detection techniques looks
promising. Given the wealth of data experiments are
delivering, surprises may be around the corner!



