Mathias Garny (TU München)

DESY, Workshop on Indirect Dark Matter Searches, 17.06.11

based on JCAP 1101 (2011) 032 (arXiv:1011.3786) with Alejandro Ibarra, David Tran, Christoph Weniger

Mathias Garny (TU München) Gamma-Ray Lines from Radiative Dark Matter Decay

• Decaying dark matter has been proposed as explanation for PAMELA/Fermi e^{\pm} measurements, e.g. $\psi_{DM} \rightarrow \ell^+ \ell^- \nu$

 $m_{DM} = 600 \,\text{GeV} \text{ (dotted)}, 2.5 \,\text{TeV} \text{ (solid)}$

Ibarra, Tran, Weniger 0906.1571

• Typical required life-times $au_{DM} \sim 10^{26} {
m sec}$

• Decaying dark matter has been proposed as explanation for PAMELA/Fermi e^{\pm} measurements, e.g. $\psi_{DM} \rightarrow \ell^+ \ell^- \nu$

 $m_{DM} = 600 \,\text{GeV} \text{ (dotted)}, 2.5 \,\text{TeV} \text{ (solid)}$

- Typical required life-times $au_{DM} \sim 10^{26} {
 m sec}$
- $\psi_{DM} \rightarrow \ell^+ \ell^- \nu$ via effective dim-6 operator $\frac{1}{M^2} \psi_{DM} \ell \ell \nu$

or: Can we constrain the dark matter scenario?

or: Can we constrain the dark matter scenario?

Idea: multi-messenger approach

• No excess in \bar{p} observed \Rightarrow leptophilic dark matter

or: Can we constrain the dark matter scenario?

Idea: multi-messenger approach

- No excess in \bar{p} observed \Rightarrow leptophilic dark matter
- Baryons and photons can be produced by higher-order processes or interactions with the medium
 - ICS, synchrotron emission
 - electromagnetic/electroweak bremsstrahlung
 - ...
 - Gamma-ray line
 - \rightarrow smoking gun signal
 - \rightarrow generically induced by loop-corrections

or: Can we constrain the dark matter scenario?

Idea: multi-messenger approach

- No excess in \bar{p} observed \Rightarrow leptophilic dark matter
- Baryons and photons can be produced by higher-order processes or interactions with the medium
 - ICS, synchrotron emission
 - electromagnetic/electroweak bremsstrahlung
 - ...
 - Gamma-ray line
 - \rightarrow smoking gun signal
 - \rightarrow generically induced by loop-corrections

Model-independent analysis of loop-induced gamma-ray lines

- fermionic dark matter decaying into leptons
- scalar dark matter decaying into leptons

• Monoenergetic photons $E_{\gamma} = (m_{\psi_{DM}}^2 - m_N^2)/2m_{\psi_{DM}}$

- Monoenergetic photons $E_{\gamma} = (m_{\psi_{DM}}^2 m_N^2)/2m_{\psi_{DM}}$
- decay product $N = \nu$, neutralino, sterile neutrino, ...

- Monoenergetic photons $E_{\gamma} = (m_{\psi_{DM}}^2 m_N^2)/2m_{\psi_{DM}}$
- decay product $N = \nu$, neutralino, sterile neutrino, ...
- decay mediated by heavy scalar Σ (e.g. $\tilde{\ell}$) or vector V_{μ} (e.g. W_R)

$$\begin{split} \mathcal{L}_{\text{eff}}^{\Sigma} &= -\bar{\psi}_{\text{DM}} \left[\lambda_{\ell\psi}^{L} P_{L} + \lambda_{\ell\psi}^{R} P_{R} \right] \ell \, \Sigma^{\dagger} - \bar{N} \left[\lambda_{\ell N}^{L} P_{L} + \lambda_{\ell N}^{R} P_{R} \right] \ell \, \Sigma^{\dagger} \\ \mathcal{L}_{\text{eff}}^{V} &= -\bar{\psi}_{\text{DM}} \gamma^{\mu} \left[\lambda_{\ell\psi}^{L} P_{L} + \lambda_{\ell\psi}^{R} P_{R} \right] \ell \, V_{\mu}^{\dagger} - \bar{N} \gamma^{\mu} \left[\lambda_{\ell N}^{L} P_{L} + \lambda_{\ell N}^{R} P_{R} \right] \ell \, V_{\mu}^{\dagger} \end{split}$$

Intensity of the gamma-ray line: intermediate scalar

• gamma-line suppressed by $\alpha_{\rm em}/\pi \sim 10^{-3}$

$$\frac{\Gamma(\psi_{\mathsf{DM}} \to \gamma N)}{\sum_{\ell} \Gamma(\psi_{\mathsf{DM}} \to \ell^+ \ell^- N)} \simeq \frac{3\alpha_{\mathsf{em}}}{8\pi} \times \underbrace{\mathcal{R}^{\Sigma}_{\eta}(\lambda^L_{\ell N}, \lambda^L_{\ell \psi}, \lambda^R_{\ell N}, \lambda^R_{\ell \psi})}_{\lesssim \begin{cases} 3 & \text{democratic decay} \\ 1 & \text{single-flavor decay} \end{cases}$$

Intensity of the gamma-ray line: intermediate scalar

• gamma-line suppressed by $\alpha_{\rm em}/\pi \sim 10^{-3}$

$$\frac{\Gamma(\psi_{\mathsf{DM}} \to \gamma N)}{\sum_{\ell} \Gamma(\psi_{\mathsf{DM}} \to \ell^+ \ell^- N)} \simeq \frac{3\alpha_{\mathsf{em}}}{8\pi} \times \underbrace{\mathcal{R}^{\Sigma}_{\eta}(\lambda^L_{\ell N}, \lambda^L_{\ell \psi}, \lambda^R_{\ell \eta}, \lambda^R_{\ell \psi})}_{\lesssim \begin{cases} 3 & \text{democratic decay} \\ 1 & \text{single-flavor decay} \end{cases}} \times \underbrace{\mathcal{S}_{\eta}(m_N/m_{\psi_{\mathsf{DM}}})}_{\text{for } m_N \to 0}$$

• enhancement when ψ/N have opposite CP parity $(\eta=-1)$

Intensity of the gamma-ray line: intermediate vector

 $\bullet\,$ gamma-line suppressed by $\sim 10^{-2}$

$$\frac{\Gamma(\psi_{\mathsf{DM}} \to \gamma N)}{\sum_{\ell} \Gamma(\psi_{\mathsf{DM}} \to \ell^+ \ell^- N)} \simeq \frac{27 \alpha_{\mathsf{em}}}{8\pi} \times \underbrace{\mathcal{R}^V_{\eta}(\lambda^L_{\ell N}, \lambda^L_{\ell \psi}, \lambda^R_{\ell N}, \lambda^R_{\ell \psi})}_{\leq \begin{cases} 3 & \text{democratic decay} \\ 1 & \text{single-flavor decay} \end{cases}} \times \underbrace{\mathcal{S}_{\eta}(m_N/m_{\psi_{\mathsf{DM}}})}_{\text{for } m_N \to 0}$$

• enhancement when ψ/N have opposite CP parity $(\eta=-1)$

Examples

• Decay into left-handed neutrinos (via scalar mediation)

$$\frac{\Gamma(\psi_{\mathsf{DM}} \to \gamma \nu)}{\sum_{\ell} \Gamma(\psi_{\mathsf{DM}} \to \ell^{+} \ell^{-} \nu)} \simeq \frac{3\alpha_{\mathsf{em}}}{8\pi} \underbrace{\frac{\left[\sum_{\ell} \lambda_{\ell\nu}^{R} \lambda_{\ell\psi}^{R}\right]^{2}}{\sum_{\ell} \left(\left|\lambda_{\ell\psi}^{L}\right|^{2} + \left|\lambda_{\ell\psi}^{R}\right|^{2}\right) \left|\lambda_{\ell\nu}^{R}\right|^{2}}_{= R_{\eta} \leq N_{\ell} \leq 3}$$

Examples

• Decay into left-handed neutrinos (via scalar mediation)

$$\frac{\Gamma(\psi_{\mathsf{DM}} \to \gamma\nu)}{\sum_{\ell} \Gamma(\psi_{\mathsf{DM}} \to \ell^{+}\ell^{-}\nu)} \simeq \frac{3\alpha_{\mathsf{em}}}{8\pi} \underbrace{\frac{\left[\sum_{\ell} \lambda_{\ell\nu}^{R} \lambda_{\ell\psi}^{R}\right]^{2}}{\sum_{\ell} \left(\left|\lambda_{\ell\psi}^{L}\right|^{2} + \left|\lambda_{\ell\psi}^{R}\right|^{2}\right) \left|\lambda_{\ell\nu}^{R}\right|^{2}}_{= R_{\eta} \leq N_{\ell} \leq 3}$$

• Hidden sector: unbroken $U(1)_X$ with kinetic mixing to $U(1)_Y$ ψ_{DM} =neutralino, N =hidden gaugino, Σ = sleptons $\tilde{\ell}_{L;R}$ see Ibarra, Ringwald, Weniger 08

$$\frac{\Gamma(\psi_{\mathsf{DM}} \to \gamma N)}{\sum_{\ell} \Gamma(\psi_{\mathsf{DM}} \to \ell^+ \ell^- N)} \simeq \frac{3\alpha_{\mathsf{em}}}{8\pi} \times R_\eta \times S_\eta(m_N/m_{\psi_{\mathsf{DM}}})$$
$$R_\eta = \begin{cases} 1.6 & \text{for } \eta \equiv \eta_{CP}(\psi_{DM}) \cdot \eta_{CP}(N) = +1\\ 4.4 & \text{for } \eta \equiv \eta_{CP}(\psi_{DM}) \cdot \eta_{CP}(N) = -1 \end{cases}$$

Scalar Dark Matter

Lepton loop helicity suppressed \Rightarrow no observable gamma-ray line

Mathias Garny (TU München) Gamma-Ray Lines from Radiative Dark Matter Decay

• Milky Way halo:

monochromatic gamma-ray flux from dark matter decay is given by the line-of-sight integral over the dark matter distribution (e.g. Bertone 2007)

$$\frac{dJ_{\rm dm}^{\rm halo}}{dE} = \frac{\Gamma(\psi_{\rm DM} \to \gamma N)}{4\pi m_{\psi_{\rm DM}}} \,\delta\left(E_{\gamma} - E\right) \int_{\rm l.o.s.} d\vec{l} \,\rho_{\rm DM}^{\rm MW}(\vec{l})$$

• M31: (or Perseus, ...) gamma-ray flux from dark matter decay in M31 within the opening angle θ_{obs} (Hegra M31 0.105°; Magic Perseus 0.15°)

$$\frac{dJ_{\rm DM}^{\rm M31}}{dE} = \frac{\Gamma(\psi \to \gamma N)}{4\pi m_{\rm DM}} \,\delta(E_{\gamma} - E) \, 2\pi \int_{0}^{\theta_{\rm obs}} d\theta \,\sin\theta \int_{-\infty}^{\infty} ds \,\rho_{\rm DM}^{\rm M31}(\sqrt{s^2 + R^2})$$

where D is the distance to the target (D = 770 kpc in case of M31 and D = 78 Mpc for Perseus) and $R \simeq D \theta$

 $\Gamma(\psi_{DM} \to \gamma \nu)^{-1}$ [sec]

Fermi 1001.4836; Hegra astro-ph/0302347 20h; Magic 0909.3267 25h; HESS 0811.3894 240h, 0905.0105 77h; CTA $A_{eff} = 2km^2$ at 5TeV, $\Delta E/E \simeq 10\%$, $\epsilon_r = 0.01$ (see 1008.3703), M31 1° 20h, diffuse $\pi(3^\circ)^2$ 1000h

Mathias Garny (TU München) Gamma-Ray Lines from Radiative Dark Matter Decay

 $\Gamma(\psi_{DM} \to \gamma \nu)^{-1}$ [sec]

 $\Gamma(\psi_{DM} \to \gamma \nu)^{-1}$ [sec]

 $\Gamma(\psi_{DM} \rightarrow \gamma \nu)^{-1}$ [sec]

Gamma Ray Line: Enhancement

Conclusion

- Dark matter decaying into leptons could be responsible for PAMELA/Fermi e^{\pm} anomalies ($\tau_{\rm DM} \sim 10^{26} \, {\rm sec}$)
- Loop-induced gamma-ray line may be observable, and can be used to constrain models

Conclusion

- Dark matter decaying into leptons could be responsible for PAMELA/Fermi e^{\pm} anomalies ($\tau_{\rm DM} \sim 10^{26} \, {\rm sec}$)
- Loop-induced gamma-ray line may be observable, and can be used to constrain models
- Scalar dark matter: gamma line helicity suppressed
- ullet Fermionic dark matter: gamma line $au \sim 10^2...10^3 imes au_{\mathsf{DM}}$

Conclusion

- Dark matter decaying into leptons could be responsible for PAMELA/Fermi e^{\pm} anomalies ($\tau_{\rm DM} \sim 10^{26} \, {\rm sec}$)
- Loop-induced gamma-ray line may be observable, and can be used to constrain models
- Scalar dark matter: gamma line helicity suppressed
- $\bullet\,$ Fermionic dark matter: gamma line $\tau \sim 10^2 ... 10^3 \times \tau_{\rm DM}$
- $m_{
 m DM} \lesssim 500\,{
 m GeV}$ stringent limits from Fermi LAT $(au \gtrsim 10^{29}\,{
 m sec})$
- $\bullet~m_{
 m DM} \sim~{
 m TeV}$ planned CTA probes relevant parameter space

Conclusion

- Dark matter decaying into leptons could be responsible for PAMELA/Fermi e^{\pm} anomalies ($\tau_{\rm DM} \sim 10^{26} \, {\rm sec}$)
- Loop-induced gamma-ray line may be observable, and can be used to constrain models
- Scalar dark matter: gamma line helicity suppressed
- Fermionic dark matter: gamma line $au \sim 10^2...10^3 imes au_{\mathsf{DM}}$
- $m_{
 m DM} \lesssim 500\,{
 m GeV}$ stringent limits from Fermi LAT $(au \gtrsim 10^{29}\,{
 m sec})$
- ullet m_{DM} \sim TeV planned CTA probes relevant parameter space

thank you!

MG, Alejandro Ibarra, David Tran, Christoph Weniger JCAP 1101 (2011) 032 (arXiv:1011.3786)

Mathias Garny (TU München)

Gamma-Ray Lines from Radiative Dark Matter Decay