A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays¹

Constraints on supersymmetric models using antideuterons²

Antje Putze ¹ L. Derome (LPSC), F. Donato (INFN Torino), & D. Maurin (LPSC) ² N. Karpenka (OKC), J. Edsjö (OKC), & P. Scott (McGill)

The Oskar Klein Centre for Cosmoparticle Physics

Crhar Klein

Antje Putze

MCM ○●	C Const 0000	raints on CR parame	eters	Indirect DM d	letection with \overline{D}		Conclusion
Me	etropolis-Ha	stings alg	gorithm				
	ch	ains spend m	ore time in 1	nore proba	able regions		
	∞ 0.75 0.74 0.73 0.72 0.71 0.7 0.71 0.7 0.69 0.68 0.65 0.50		2000 2500		3500 4000	4500 stu	5000 2798
			a subset	The Road States			

Evaluation of the burn-in and correlation lengths for independent sample extraction

Estimation of the posterior PDF

Antje Putze

MCN 00	AC Constraints on CR parameters ●○○○○	Indirect DM detection with \overline{D} Conclusion	usion
Di	ffusion Model		
	USINE — semi-analytical propagation Diffusion model with minimal reaccel	n code (see Maurin's talk) eration, constant Galactic wind	
		Galaxy is divided into two zones: a thin disk of size h ; a diffusive halo of size $L \gg h$. $K(R) = K_0 \beta^{\eta \tau} R^{\delta}$ $Q(R) = q \beta^{\eta s} R^{-\alpha}$ $n_d = n, n_h = 0$	
	Free parameters		
	 6 transport par.: K₀ [kpc²/Myr] 3 source par.: q in (m³ s GeV/n) 	, η_{T} , δ , V_c and V_a [km/s], L [kpc].	
Antj	e Putze Oskar Klein Centre (SU)	IDMS 2011 Constraints on CR and SUSY models	4/11

Ctable		
MCMC oo	Constraints on CR parameters ○●○○○	Indirect DM detection wit

Conclusion

5/11

Stable nuclei: constraining transport parameters

- Configuration with V_c and V_a preferred:
 - L = 4 kpc fixed

$$V_c = 18.8^{+0.3}_{-0.3}\,\mathrm{km/s}$$

$$\delta = 0.86^{+0.04}_{-0.04}$$

 ${\cal K}_0 = 0.0046^{+0.0008}_{-0.0006} \, {
m kpc}^2/{
m Myr}$ $V_a = 38^{+2}_{-2} \, {
m km/s}$

- Kolmogorov spectral index $(\delta = 1/3)$ disfavoured;
- similar results with ${}^{2}H/{}^{4}He$, ${}^{3}He/{}^{4}He$ [Coste *et al.*, in preparation]

Stable secondary-to-primary ratios: degeneracy between K₀ and L $\lambda_{\rm esc} = nmvh\frac{L}{K(E)}$

CMC	Constraints on CR parameters
	00000

Indirect DM detection with \overline{D}

Primary nuclei: constraining source parameters

Model	η_T	$K_0^{ m best} imes 10^2$	$\delta^{ m best}$	$V_c^{ m best}$	$V_a^{ m best}$	$\chi^2/d.o.f$
		$(kpc^2 Myr^{-1})$		$(km s^{-1})$	$(km s^{-1})$	·
П	1.	9.76	0.23	0.	73.2	4.73
III	1.	0.48	0.86	18.8	38.0	1.47
I/0	-2.6	2.05	0.61	0.	0.	3.29
III/II	-1.3	3.16	0.51	0.	45.4	2.26
[Maurin <i>et al.</i> , A&A 516 (2010), A67]						

MCMC	Constraints on CR paramet
	0000

Indirect DM detection with \overline{D}

Conclusion

Primary nuclei: p and He

ers

 α well constrained between 2.2 and 2.5 (independent of model and data) asymptotic regime ($\gamma_{asymp} = \alpha + \delta$) not reached

MCMC	Constraints on CR parame
	0000

Indirect DM detection with \overline{D}

Conclusion

Primary nuclei: p and He

ters

 α well constrained between 2.2 and 2.5 (independent of model and data) asymptotic regime ($\gamma_{\rm asymp}=\alpha+\delta)$ not reached

Antje Putze

Constraints on CR parameters

Indirect DM detection with \overline{D}

Indirect dark-matter detection using antideuterons

[Donato et al., PRD 78 (2008)]

Interfacing USINE & SuperBayeS

- DarkSusy v5: primary (dark-matter) spectra;
- USINE v0: secondary (cosmic-ray) spectra;
- SuperBayeS (upgraded + bug fixes): scanning (nested sampling).

MCMC oo Constraints on CR parameters

Indirect DM detection with \overline{D}

Conclusion

Preliminary results and future plans

Isothermal profile & fixed propagation parameters

Future plans

- updated coalescence model;
- simultaneous constraints on cosmic-ray and SUSY parameters;
- marginalisation over dark-matter halo parameters

Antje Putze

Oskar Klein Centre (SU)

IDMS 2011

Constraints on CR and SUSY models

SY models 10/11

MCM oo	C	Constraints on CR parameters	Indirect DM det 00	ection with \overline{D}	Conclusio
Co	nclusion				
		Successful posterio parameters of the	or PDF extractio one dimensional o	n of the propa diffusion model	gation
	First estim the radius	ation of the Galactic hat r_h of the local bubble	alo size <i>L</i> and		(kpc)

Good constraints of the spectral slope α implicating a universality for primary nuclei

Estimation of detection power of antideuterons with future cosmic-ray experiments

MCMC is a robust tool allowing an excellent parameter estimation in high dimensional parameter spaces.

Antje Putze

Oskar Klein Centre (SU)

IDMS 2011 Constraints on CR and SUSY models