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The dark matter is constituted by particles which have:

« Interactions with nuclei not stronger than the weak interaction.
* No baryon number.
 Low velocity at the time of structure formation

« Lifetime longer than the age of the Universe.
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LIGHT UNFLAVORED MESONS ‘ I DARK MATTER “

For | =1 (m, b, p, 3): ud, (uT—dd)/v/2, dT: J= 7
for I =0(n o', h W, w o f, ) ud+ dd) + c(s3)
Mass m= 7
Mean life 7 = ?
I6(P) =17 (0)
p

Mass m — 13057018 + 0.00035 MeV (S — 1.2 DECAY MODES Fraction (;/T) Confidence level [MeV/ic)
Mean life 7 = (2.6033 + 0.0005) x 1078 s (S =1.2) ) ) o) )

cr = 7.8045 m

at — ¢y~ form factors [
Fy, = 0.0254 + 0.0017
Fap = 0.0119 + 0.0001
Fy- slope parﬂa%egter a=010+ 0.06
_ +0.
R= D'GSQ—D.GDE
7T modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on
Searches for Axions and Other Very Light Bosons.

=+ DECAY MODES Fraction (I;,/T) Confidence level (f\ﬂ:"u"c]
pty, [b] (99.08770-0.00004) % 30

ptu,y [c] (200 +025 )x10~4 30
etu, [6] ( 1.230 +0.004 }x 104 70

et . [c] (739 +005 )x107 70
ety nl (1.036 +0.006 )x 1078 4
etv.ete (32 405 )x1079 70

et v < 5 x 107 00% 70



DM nucleus — DM nucleus

detection searches
DM DM -y X, e*e-... (annihilation) pp - DM X
DM -y X, e*X,... (decay)
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Matter stability in the Standard Model

particle Lifetime Decay channel Theorerical explanation
Lightest baryon.

proton 7>8.2%x10°} years p—e’ n° Stability related to baryon
number conservation
Lightest charged particle.

electron |14.6x10% years e »yv Stability related to electric
charge conservation
Lightest fermion.

neutrino 7x210% years Vo yy Stability related to Lorentz
symmetry conservation

— xt-to-lightest b :
neutron [r=8857+08s |nopr,e | oxXi-Torlightest baryon

Isospin symmetry mildly broken.




Matter stability in the Standard Model+DM

particle Lifetime Decay channel Theorerical explanation
Lightest baryon.

proton 7>8.2%x10°} years p—e’ n° Stability related to baryon
number conservation
Lightest charged particle.

electron |14.6x10% years e »yv Stability related to electric
charge conservation
Lightest fermion.

neutrino 7x210% years Vo yy Stability related to Lorentz
symmetry conservation

— xt-to-lightest b :

neutron  1-8857:08s nopve L oxI-to-lightest baryon
Isospin symmetry mildly broken.

Dark 277 277

matter

7>10° years




Matter stability in the Standard Model+DM

particle RS hannel Theorerical explanation
Accidental symmetry e
proton of the S1:andar'd Mode.l S’rabuh’ry related to baryon
renormalizable Lagangian number conservation
electron |14.6x10% years e »yv
Local symmetries
neutrino | tx10% years Vo yy STGbIlITy rela’red to Lorentz
mmetry conservation
— xt-to-li st b :
neutron =8857:08s nopy,e  hox-To-lightestbaryon
Isospin symmetry mildly broken.
Dark
10° ??7? ??7?
matter r>107years

A priori, no symmetry principle that guarantees absolute stability

of the dark matter particle.




Sketch of a WIMP dark matter model:

Beyond the SM
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Sketch of a WIMP dark matter model:

Supersymmetry

1~10%°s X122 vv,W'e




Sketch of a WIMP dark matter model:
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Supersymmetry

v

7 Requires a suppression of
X

the coupling of at least

22 orders of magnitude!
1 >10"s ’

T X
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Sketch of a WIMP dark matter model:

!
Supersymmetry
* Common solution: forbid
; the dangerous couplings
Xl —— altogether by imposing
exact R-parity conservation.
_‘_ TX: 0 Wissn = Y5 €L Hy + Y5 d5QiHy + YiuhQ  Hy, + pH Hy +

1 1

/_ The lightest neutralino is
* SM absolutely stable




Unstable WIMPs: some examples

m Gauge boson of a hidden SU(2) symmetry, which is spontaneously broken.

Accidental SO(3) symmetry in the renormalizable part of the Lagrangian
< Dark matter particle long lived. Hambye
S0O(3) symmetry broken by dimension-6 operators. e.g

T £

'H

*,L'j

. A 1 TeV\? /100 GeV
R 28 ,
I'MA—~vh)"" =1.5x10"s (2 SETIIE Ge\-’) ( o ) ( Mo ) Arina et al.

m Lightest neutralino decaying into a hidden U(1) gaugino. AL, Ringwald, Weniger

. - M
0 —4 14 277X
X1 / PO = fX) ~107"g"e’ "y

N £ /

() — ¢gX m;\ 2

Note: (”\'}J 1X) (—‘”) usually «1

8 ~ ['(x] — 0X) mg " .
X < "leptophilic

m WIMP decaying via instanton effects carone, Erlich, Primulando



WIMP dark matter is not the only possibility:
the dark matter particle could also be
superweakly interacting

WIMP—type Candidates {},~1
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Sketch of a superWIMP dark matter model:

—— Beyond the SM
v

super WIMP £

1/_ SM



—— Beyond the SM

v

super WIMP L

17
TDM>1O S

—

KSM

It is enough a moderate
suppression of the coupling
to make the superWIMP a
viable dark matter candidate.



Unstable superWIMPs: some examples

* Gravitinos in general SUSY models Takayama, Yamaguchi;

(without imposing R-parity conservation). Buchmdller, et al.

AI, Tran; Ishiwata et al.;
Decay rate doubly suppressed by the SUSY Choi et al.. Lola et al

breaking scale and by the small R-parity violation. Talk by M. Grefe

* Hidden sector gauge bosons/gauginos. cpen Takahashi, Yanagida

Decay rate suppressed by the small kinetic AL, Ringwald, Weniger:
mixing between U(1), and U(1)

hid
* nghf-handed HCUTPiHOS/SHCUTr‘iHOS. Babu, Eichler, Mohapatra

Decay rate suppressed by a tiny coupling Pospelov, Trott
between left and right sectors.

 Hidden sector par'TicleS. Eichler; Arvanitaki et al.;
Decay rate suppressed by the GUT scale. Hamaguchi, Shirai, Yanagida:

* Bound states of strongly interacting particles. pamaguchi et al.
Decay rate suppressed by the GUT scale. Nardi et al



Indirect detection

p(r) dN
mpyMTHM AL

Source term: Q(E&F) —



Indirect detection

Uncertainties in the halo profile
are usually not critical

Source term: Q(E&F) —

Fluxes controlled by the lifetime.
Even for thermal relics the fluxes
can be sizable (no boost factors needed)



E*J(E) (GeVm™s™'sr™)

Electron and positron fluxes I

¢ HEAT Eznc- 3 ¥ HESS (2008)
L A BETS (200 . FERMI {2009)
O AMS-01 (2002)
| m ATIC-1,2 (2008)
x PPB—BETS (2008)
7 HESS (2008)

| AHEAT 84+85
WCAPRICE 94

PAMELA 08 T T

0.01 L. L e ]

10° 10' 10? 10° 10°
E (GeV)

E (GeV)

Evidence for a primary component of positrons
(possibly accompanied by electrons)

astrophysical sources? Pulsars, SN remnants...
new Particle Physics? DM annihilation, DM decay.



Electron and positron fluxes I

AI, Tran'O8

Possible decay channels o
AIL, Tran, Weniger 09

Pz
fermionic DM P wer=
Wty
0-Z°7"
scalar DM P-wrw-
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0.050
__ 100 Tev | Soowp
a1
5 TeV R E 0.010
BRI = 0.005}
1 5 10 500 100 500 1000
Energy [GeV] Energy [GeV] 26
T ~10°°s
DM

For "low" DM mass: conflict with PAMELA (spectrum too flat)
For "high" DM mass: agreement with PAMELA, but conflict

with H.E.S.S.
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Some decay channels can explain
simultaneously the PAMELA,
Fermi LAT and H.E.S.S. observations

Decay Channel| Mpy [GeV]|mpum [10%°s]

ypm — pTpTr| 3500 1.1
dpv — (T v | 2500 1.5
ypMm — WERF| 3000 2.1
dDM — pT 2500 1.8

ODM — A 5000 0.9

No need of boost factorsl!



10%° seconds??

The lifetime of a TeV dark matter particle which decays
via a dimension six operator suppressed by M? is

e 107 TeV \° M 4
MpM 1015G6V

M is remarkably close to the Grand Unification Scale

Indirect dark matter searches can probe
particle physics models at very high energies.



the electron/positron excesses can be naturally
explained by the decay of dark matter particles

0.050

<
(=)
]
=)

0.010F

B, [(em?strs) ' GeV?|

0.005F

1 5 10 50 100 500 1000
Energy [GeV]

Energy [GeV]

Is this the first non-gravitational evidence of dark matter?

"Extraordinary claims require extraordinary evidence"

Carl Sagan
More tests needed
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AMS (M. Aguilar et al.)
BESS-polard4 (K. Abe et al.)
BESS1999 (Y. Asaoka et al.)
BESS2000 (Y. Asacka et al.)
CAPRICE1998 (M. Boezio et al.)
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BESS 2000 ¥. Asacka ot al)
BESS 1995 {¥. Asaoka st al)
BESS-polar 2004 (K. Abe et al.}
CAPRICE 1994 (M. Boszio ot al)

CAPRICE 1938 (M. Boszlo et al.)

HEAT-pbar 2000 (4. &. Beach of al)
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E 10t
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10 102 10"
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1

10 10?
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Good agreement of the theory with the experiments.
Stringent constraints on the existence of an exotic component.



Antiproton flux from dark matter decay

Propagation mechanism more complicated than for the positrons.

The predicted flux suffers from huge uncertainties due to
degeneracies in the determination of the propagation parameters

WowWp#

0.01¢

01 T T T T T T T F ' I
_ [ = PAMELA
] [ *x IMAX1992
R =5 | o HEAT2000
0.01F [ R %—% . 0.001 ¢ CAPRICE1998
T t = CAPRICE1994
[ ¥ BESS2000

| 4 BESS1999

. M‘Q‘X I J _
0.001 & < CAPRICE98 N IE- 10—4 - - ! ;
s CAPRICE94 . ~ o —¥ il

— gt :

¥ BESS95/97
10 % :

-6

| I- | | | - | | ! . A | . . L
0.1 05 1.0 *0 10.0 50.0 100.0 10 ) 5 5 10 20 50 100
kin. Energy [GeV] kin. Energy [GeV]

m=3TeV, 1=2.1x10%s

@ [(m’strs GeV) ']

._.

DI
=
T

—
L]
|
uh



Tran et al.
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Diffuse "extragalactic” gamma ray flux from DM decay
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——— EGRET - Strong et al. 2004
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Fermi coll.
arXiv:1002.3603



Diffuse "extragalactic” gamma ray flux from DM decay
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Diffuse "extragalactic” gamma ray flux from DM decay

X107
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dJ/dE., [GeVcem —2g—lgtr— 1]

. 1'3_5:| T T T T T T

AI, Tran, Weniger

Diffuse gamma ray flux from DM decay . s 0909 3514
(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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Wy

* Crucial test: the contribution from DM decay to the total flux should not

exceed the measured one.



dJ/dE. [GeVem ™ 25— gty 1]

AI, Tran, Weniger

Diffuse gamma ray flux from DM decay . s 0909 3514
(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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* Crucial test: the contribution from DM decay to the total flux should not
exceed the measured one.
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A o M

X o not diffuse and point directly o the source. '
' More indications for or against the decaying dark matter
scenario arise from the angular distribution of gamma-rays. §




It is possible in principle to distinguish between annihilating
dark matter and decaying dark matter

10°

10°
’-3_3\ 107 Annihilating DM
= .

- s b
,/ .,
- R
W DecayingDM =
1 1 1 1 1 1 1
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A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisofropic.

(but no North-South anisotropy)



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 1) For a certain energy, take the map of the
total diffuse gamma ray flux

~180 -90 0 90 180



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 2) Remove the galactic disk

90

10°

-10°

-90

~180 -90 0 90 180



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 3) Take the total fluxes coming from the direction
of the galactic center (Jg¢) and the galactic

anticenter (J ac).

~180 -90 0 90 180



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 4) Calculate the anisotropy, defined as:

Jao — J
A(E) GO GA

- Jac + Jaa




A crucial test: since the Earth is not in the center of

the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.
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Strategy: 4) Calculate the anisotropy, defined as:
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A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 4) Calculate the anisotropy, defined as:

Jao — J
A(E) = GO GA

04 — — . DM decay prediction:
b DM— ity 10° : 90° / 15-20% at high energies!
mMam = 2000 GeV
- “f ram = 1.4 x 1026 s

m:—

e N A NN N ssamwmg s, ]
Ta
-

00F

: . conventional"
-p14e

o1 05 10 50 100 soo1000 diffusive model
E. [GeV]

AIL, Tran, Weniger
arXiv: 0909.3514



Gamma-ray lines

Inequivocal sign of dark matter. No (known) astrophysical source can
produce a gamma-ray line in the multi-GeV range

E, 95%CLUL 7 [vZ] (10% s)

(GeV) (10~? em2s71) NFW Einasto Isothermal 1 30
30 3.5 17.6 [4.2] 17.8 [4.2] 17.5 [4.2] 0" F
40 1.5 10.1 [2.9] 10.3 [2.9] 10.0 [2.9]

50 2.4 15.5 [5.0] 15.7 [5.1] 15.4 [5.0]

60 3.1 9.8 [3.5] 10.0 [3.5] 9.7 [3.5]

70 1.2 21.6 [8.2] 21.9 [8.3] 21.5 [8.1]

&0 0.9 26.0 [10.4] 26.4 [10.5] 25.8 [10.3] 102 t
90 2.6 7.7 [3.2] 7.8 [3.2] 7.6 [3.1] —_

100 1.4 12.6 [5.4] 12.8 [5.4] 12.5 [5.3] »n

110 0.9 18.9 [8.2] 19.2 [8.3] 18.8 [8.2] =

120 1.1 13.3 [5.9] 13.5 [6.0] 13.2 [5.9] A

130 1.8 7.6 [3.4] 7.8 [3.5] 7.6 [3.4] g
140 1.9 7.0 [3.2] 7.1 [3.3] 7.0 3.2 10
150 1.6 7.5 [3.5] 7.6 [3.5] 7.4 [3.4]

160 1.1 10.2 [4.8] 10.4 [4.8] 10.1 [4.7]

170 0.6 17.0 [8.0] 17.2 [8.1] 16.9 [7.9]

180 0.9 11.6 [5.5] 11.8 [5.6] 11.6 [5.4]

190 0.9 10.4 [4.9] 10.5 [5.0] 10.3 [4.9] 10?7
200 0.9 10.6 [5.1] 10.8 [5.1] 10.5 [5.0]

Fermi coll.
arXiv:1001.4836
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4 ”~
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100
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1000



Gamma-ray lines

Inequivocal sign of dark matter. No (known) astrophysical source can
produce a gamma-ray line in the multi-GeV range

. Lower limits on DM inverse decay width into - (halo region)
1G | T T T T T T 7 T T T T T L |
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2| e 1 .
= 10 Iy
= b I 3
~ L,_&_l—‘* 4—!73* Sy
>—£—| »—2—¢ ' s
s JH'I —e—
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= = Fermi LAT l-year
1G2E ! ! P f ]
10"

m, |GeV]

Vertongen, Weniger
arXiv:1101.2610

Talk by C. Weniger



Gamma-ray lines

Inequivocal sign of dark matter. No (known) astrophysical source can
produce a gamma-ray line in the multi-GeV range
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Garny et al.
arXiv:1011.3786

Talk by M. Garny



Gamma-ray lines

Predicted to be fairly intfense in some concrete models

e Gravitino in general SUSY models

(without imposing R-parity conservation) I
10“ : Wr E
= 107! .
T ———— ;Ci'-C'
Sreekumar et al. —s— =
Strong etal. —e=— ,E
_10° C§ 102 -
=
_5
O ] 107 -
5 =3 1000
g Covi et al.
30T e
W
0.1 T 1|U[]
E (GeV Talk by M. Grefe

Buchmiiller et al.



Gamma-ray lines

Predicted to be fairly intfense in some concrete models

« Vector of a hidden SU(2) gauge group
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Gamma-ray lines

Predicted to be fairly intfense in some concrete models

« Vector of a hidden SU(2) gauge group
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Three body decay mediated by a scalar

Yom(p)




Gamma-ray lines

Garny, AL, Tran, Weniger

Three body decay mediated by a scalar
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Gamma-ray lines

Garny, AL, Tran, Weniger

Three body decay mediated by a vector
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Neutrino flux

* Difficult to see due to Iarge a’rmospherlc backgr'ounds
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Neutrino flux I

* Difficult to see due to large atmospheric backgrounds.
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Neutrino flux I

* Difficult to see due to large atmospheric backgrounds.
* But not impossible: it may be observed by IceCube
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Conclusions

* Stability of the dark matter particle is an open question (as is
proton stability). Indirect dark matter searches constrain the
dark matter lifetime.

* Some well motivated candidates for dark matter are predicted
to decay with very long lifetimes. Constraints on concrete models.

* Decaying dark matter can explain the electron/positron
excesses observed by PAMELA and Fermi. Furthermore, these
scenarios make predictions for future gamma-ray and neutrino
observations, providing tests for this interpretation of the e+/e-
excesses
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