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SOMMERFELD EFFECT
for coupled channels

Consider a process of the type

XaXb = XiXj — XiX; = --- — SM final states

where the intermediate pairs x;x; can be the same or different as the initial
pair xax» (fig.a)

recurrence relation for the annihilation amplitudes



In the non-relativistic limit

(A;; full amplitude, A?j tree level value):
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p CM three-momentum, g;»4 and gj;, coupling constants,
N;;.#y normalization and combinatorial factors.

Our convention :
£ = p?/2m% kinetic energy of the reference incoming pair a,b

my reduced mass, 26m;; = m; +mj — (Mg + my)



To rewrite the expression above in the form of an inhomogeneous Schrodinger

equations define :
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which allows us to rewrite the recurrence as a differential equation:
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¢. the exchanged particle (scalar, vector or axial vector boson).

The potential has the form
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Since the Sommerfeld enhancement factorizes out as a distortion of the
incoming wave-function,
we first solve the associate homogeneous equation

with an initial state ab with momentum p we get a set of

wave functions ¢ ()

Finally one reconstructs the amplitude
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The result gets simple in partial waves.



Decomposing in partial waves, consider the reduced radial wave-function ¢(x):

Pi ',z(x)
Rijpi(r) = Np”T, T = pr

getting equation, for the dominant S-wave, (a,b reference incoming pair)

dQQOZ‘j(JZ) + mﬁ,j (1 B 25mij
dx? mab E

1
) i)+ £ > Vit @ens () | =0,

i'j'p
Boundary conditions: ©(0) =0

At x — oo the solution describes one incoming x.x, state and all the possible
Xix; States that can be produced in the ladder.



Two cases for the states x;x; at oo:
1. 20m;; < £ - enough energy to produce states y;x; on-shell

2. 20m;; > € - not enough energy, states yx;yx; are off-shell

The radial wave functions behave at infinity as:

Ca,) ikapr 1 e ab” . . .
Rap(r) — e — 1€ incoming pair
Cij eikiﬂ' .
: if on — shell
Rij(r) — { Bl kg every other x;x;
S if off —shell

(Normalization consistent with R,, = sin(kqr)/r for the non-interacting case)
For the reduced wave functions at z — oo (write gag;’ for the initial state ab)

with g;; = m? /ma . (1 — 26m;/E)
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’i\/qz‘jsﬁgf — mﬁpgf’ = if on — shell
{ \/—qijcp?f + arcpgf = if off — shell

these b.c.'s determine the wave functions gog‘f(x)



One then and find the cross section.

The (co-)annihilation cross section of the pair xqxp is
determined, up to the kinematical factor, by

O-(ab) x Z Sab O 2

where the enhancement factors with our normalization are
(for the S-wave)
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The Sommerfeld effect can be very large when there is a resonance.
An example in the case of just one channel for a Yukawa potential %e*f”
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cross-section enhancement as a function of the co-annihilating mass in Tev,
for p =90 Gev, a = 1/30 and an incoming velocity v = 103



The resonant Sommerfeld enhancement also occurs for higher partial waves.

It is computed by taking higher derivatives of the reduced wave-function at
the origin.

An example for the P-wave [ =1
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enhancement as a function of m(Gev) for v=10"3 v =10"% v = 10" . Here
a =1/30, u = 90Gev.
In the following applications we consider the dominant [ = 0 S-wave.
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The enhancement depends on the spin of the initial state, taken to be two
non-relativistic fermions.

Project the cross section in the singlet and in the triplet spin-state,
and multiply each projection by a different enhancement factor.

Describe a fermion-antifermion (Dirac or Majorana) pair by
For a (Dirac) fermion-fermion pair take ¢ — 1°.

The spin singlet S = 0 and the spin triplet S = 1 are encoded by
(extending M.Drees,J.M.Kim,K.I.Nagao PRD2010 arXiv:0911.3795) :

S=0: O,=7s, S=1: 0,=7-8,
Check, taking the non-relativistic large components :
Yo=(al ol 0 0) ¢=0C9Pf
&a’)’ﬂbb - —aibi + ailﬁ @Za’}@,d)b = —a;bi — aid
The normalization is Nj; =1/vV2 i#j N;=1/2 i=3j
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To compute the enhancement, evaluate how the coupling in front of the
potential depends on the spin state.

Take the interaction (I" denoting a generic gamma matrices structure)
Vint = g2 / didg Pn(2) i (2) VS (& — DT )T (w),

rr :
Iyi9j1 e~

where kafﬂ(r) = is the non-relativistic potential due to the

propagator of the boson exchanged between the two vertices. In the
non-relativistic limit only I' = 1, ~0,v;v5 can contribute.

Compute Vin - [ dZ Nijtp; 2)O0.1h;(—2)|0) DY (2)
by doing contractions:

1) 1D I ) et

getting

(Wi(2)i(2)) — o(Z - 2)

Vint - @ (2) = @8 (@) = e(klig, VT, (7]) 7 ()

The evaluation of c(klij,~) fixes the strength of the potential in the
Schrodinger equations.
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A benchmark model

only the fermions of the MSSM and their SU(2) x U(1) interactions :

- a triplet of Majorana fermions in the adjoint representation
call them Wino's with a gauge invariant mass M

-two left-handed doublets in the fundamental representation
call them Higgsino's with a gauge invariant u—mass term

One can reorganize those fermions and their Lagrangians into:

— a Wino triplet AT, A= = (A7), A0 = (\%° (Y =0)
Lwino = AT (iy"0, — gy*W2 — M)XT 4 IX0(iyk8), — M)X°
_|_g§\+f),Mle-)\O + gj\O,YMWM—A—i-

— a Higgsino Dirac-fermions-doublet ¢ = (¢°,¢~) (Y = —1)
/
Ly =9y 0u — gy Wit + %Bu — Mp)

where M; = u of the u-term.
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RELIC DENSITY COMPUTATION

Take a set of N particles x1, x2, ... xn, With mass m; m1 <mo < ... < my)
such that:

i) inelastic scattering on SM thermal bath turn each state into another one
ii) x1 is stable.

A system of N coupled Boltzmann equations for each number density n;

as after freeze out all heavier states decay into the lightest = a single
equation for n = ZZ n;, (e.g. J. Edsjo P.Gondolo PRD1997 he-ph/9704361) :

dn
dt
P.Gondolo J.Edsjo P.Ullio M.Schelke E.A.Baltz JCAP2004 astro-ph/0406204

+ 3 Hn = —(0effv) [nQ — (neq)Q}
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The effective thermally averaged annihilation cross section

nn’
(oerrv) = Z<0ij%'>—l y

necid ned

q

i,]

is a weighted sum over the thermally averaged annihilation cross sections
xi + x; — X (in the dilute limit, two-body states dominate):

1 d>p; &°p; PPpx e ¢
(0ijvij) = —eg =7 Z/ Y 2Ej- 2EX54(Z%' + pj — px) 7 () 17 (ps) | Asjsx |2
Iy !

n;! = fd3pffq(pi) is the thermal equilibrium number density for the species 1,

e
nwzzg.ng.
1 7

Here we will include the Sommerfeld effect: |A,|? = Zij Sl.(;b) \A%P,

with Sgb) computed as said before.
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Results
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Relic density Qh? in the u = Mpiggsino-M2 = My ino Plane,
left): perturbative case, right) with Sommerfeld effect included.
The brighter the colour the higher Qh?. The solid line corresponds to the
value (with 1 ¢) for relic density (7-year WMAP) Qh? = 0.1123 4+ 0.0035.

call Wino-region M»> << pu and Higgsino-region u << Mo.

The Sommerfeld enhancement gives a sharp shift in the WMAP-Wino-region
to heavier masses; a pure Wino is found at QA2 = 0.11 for a mass of about
2.8 TeV.

Much milder effects of the Sommerfeld enhancement are seen in the
Higgsino-region.
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The results found for pure Winos and pure Higgsino are similar to J.Hisano
S.Matsumoto M.M. Nojiri O.Saito PRD2006 hep-ph/0212022 and M.Cirelli
A.Strumia M. Tamburini NPB 2007 arXiv:0706.4071 in the same limiting cases;

we have more annihilation channels and a careful dependence on the spin
state of the annihilating particle pair (e.g. a different coefficient —3 in the
axial vector exchange in agreement with Drees et al:2009) and a better
control of the numerical solution of the Boltzmann Eq.

Another interesting feature is a spike in the region connecting the pure
Higgsino to the pure Wino limit, towards M> ~ u but still with a predominant
Wino component.
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In this region, we show in detail the ratio: relic density including Sommerfeld
enhancement divided by relic density without it.
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A thin "“resonance” slice appears in the plane, starting for pure Winos with
mass m,o ~ 2.5 TeV and extending to heavier masses into the region with a
Sizable Higgsino fraction, where the relic density agrees with observations.

The value of the mass we find for a pure Wino ml R Tln = indicating a

w X

possible loosely bound state: Bohr radius ~ interaction range.
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Radiative corrections to the Sommerfeld enhancement
from corrections to the potential appearing in the Schrodinger equation.

2-body potential & sum of the 2-particle-irreducible diagrams. The crossed
box is 2-particle-irreducible:

7 \E
ffy 1
7 i

—2myr

it gives a correction ~ O(oﬁ)% compare with the leading term O(«)<
It is suppressed by o and it goes faster to zero for large r:
it would give a minor correction to the Sommerfeld enhancement.

—7)’1/¢7'

T
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Other corrections come from the the radiative corrections to the vertex and to
the propagators.

They contain large Log’'s and could re-sum to the running of the coupling
constant.

Question: should we put the coupling at the m ~ Tev scale ?
Here two scales: m ~ Tev, my ~ 0.1Tev (and momentum transfer < myy)
a Situation differing from the standard renormalization-group analysis with one

large overall scale;
here more similar to the case of the forward scattering.

20



Radiative corrections to the vertex and propagators

pAMNRRRRALT
g Va,
.
st padinm
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Take SU(N) (N = 2), call the vertex (suppressing group indices)
—igWry - WW

m mass of W, m,, mass of W, u renormalization scale
g2 square momentum transfer g < m?2.

- 2
Va: —igWy - WW (4gﬂ)2(—% + C(r)) x (% —

1 l1-z T 2m2 —z—y)m2+zyq?
2f0 dx ; dy LOg[( +y) +(1'u2 y)mg+ yQ]
1 (I (3t + 1oy )m— () (L)
+2 fode [ dy (ot yPmeF A==y F oy )

C(r) = N adjoint and C = =1 fundamental.

The last term is a UV-finite contribution, however IR divergent for
m2/m? — 0.

Large Log's corrections, dropping 2/e:

g2

Va: —igWy - WW ——
a gy (4m)?

N m?2 m?
(—5 +C(r)) x (= Log[ﬁ] - 2Log[m—%}] )
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_ o 2 1 m2+4x(1—x)g?
Vbi —igWy WW ol x (2 -2 [ de Log[™5=T] —

1 I 1—z—y)m2+(z m2 +zyg?
2f0 dleo 1dy Log[( Y) +£2+y) o+ yq]
_ T 4 —z—y)(2—z—y)m*—2(z+y)

fo dz fo G e e ek )

The last term is a UV -finite contribution, however IR divergent for
m2 /m? — 0.

Large Log’'s corrections, dropping 6 /¢ :

2 2 2 2
g N . My me. m”
@22~ (—2Log[ MQ] Log[/ﬂ] 2Log[—51)

Vb: —igWy - WW

w
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There are radiative corrections to the vertex induced by the Fermion W
wave function renormallzat|on

4m2 fo da (2— x)x(l gc))2 )

(1—z)2m24xzm?2

2+xmw] +

e

We find the large Log’s corrections, dropping 2/e:

92 m2 m2
C(r) x (Log[—] + 2Log[—] )

Fwf: —igWy - WW
(47)2 p? mg,

By summing the Va, Vb, F wf contributions, the large Log’'s containing m? in
the argument disappear:

2

(49 )2]; x (— 2Log] w])

—igWry - WW

Actually, by performing integrations by parts in the integrals over the z,y
parameters, it is seen that for ¢ = 0 the sum of the three contributions is
exactly equal to

2

g- N ! xm>
—gWy - WW (4n)2 > X (— —2/ dx Log| Mzw])
0
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This is consistent with the Slavnov-Taylor identities:
Zygww =14+ Va-+ Vb Zyw=1—Fp
Z\le\lf
2y

is the same for any W = it cannot depend on the W mass m.

To complete the survey of the radiative corrections, we include the correction
induced by (one-half of the) Gauge boson W wave function renormalization:

2 2
s ¥ (N = 2 Logl™41} + "matt”)

6
where "matt’ denotes the contribution of the matter, i.e. leptons, quarks and
possibly higgs of the form

matt' = —(#)( — Log| w]) (here we show large Log's only).

Gwf:—igWy - WW

This correction does not depend on the fermion mass m
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By summing everything we get the total correction to the coupling constant g
( dropping c¢p/e absorbed by a renormalization at a reference scale):

2

g 11 1 m2 B
g(1+ anz (N5 - FHH-—5 Log[?]})) = g(m7)

At the lowest order we recover indeed, with g = g(u?):
212 _ g(u?)?

2)2

1+ Gy (NS — (#)) Logl

g(m

that is the standard running of the SU(N) coupling constant at the scale my,.

In conclusion:

by taking the coupling constant g(mfu) at the mfu scale, the radiative
corrections to the vertex W~ - WW (appearing in the evaluation of the
Sommerfeld effect) are negligible
for ¢ < m?2 << m? (actually, no correction at all for ¢> — 0).

The same result holds for the U(1) interaction due to the U(1) Ward identity.
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