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SOMMERFELD EFFECT
for coupled channels

Consider a process of the type

χaχb → χiχj → χ′iχ
′
j → . . .→ SM final states

where the intermediate pairs χiχj can be the same or different as the initial
pair χaχb (fig.a)
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recurrence relation for the annihilation amplitudes
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In the non-relativistic limit

(Aij full amplitude, A0
ij tree level value):

Aij(p) = A0
ij(p)−

∑
i′j′φ

Nij,i′j′
gii′φgj′jφ

(2π)3

∫
d3k

(~p− ~k)2 +m2
φ

Ai′j′(k)
~k2

2mi′j′
r

− E + 2δmi′j′

~p CM three-momentum, gii′φ and gj′jφ coupling constants,
Nij,i′j′ normalization and combinatorial factors.

Our convention :
E = ~p 2/2mab

r kinetic energy of the reference incoming pair a, b

mij
r reduced mass, 2δmij = mi +mj − (ma +mb)
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To rewrite the expression above in the form of an inhomogeneous Schrödinger
equations define :

Aij(~p) =

(
~p2

2mij
r

− E + 2δmij

)
ψ̃ij(~p) (1)

U0
ij(~r) =

∫
d3~p ei~p·~rA0

ij(~p, P0) (2)

ψij(~r) =

∫
d~p ei~p·~rψ̃ij(~p) (3)

which allows us to rewrite the recurrence as a differential equation:

−
∂2

2mij
r

ψij(~r) = U0
ij(~r) + (E − 2δmij)ψij(~r) +

∑
i′j′φ

V φ
ij,i′j′ψi′j′(~r),

φ: the exchanged particle (scalar, vector or axial vector boson).

The potential has the form

V φ
ij,i′j′(r) =

cij,i′j′(φ)

4π

e−mφr

r
,

cij,i′j′(φ) depends on the couplings and states involved.
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Since the Sommerfeld enhancement factorizes out as a distortion of the
incoming wave-function,

we first solve the associate homogeneous equation

with an initial state ab with momentum ~p we get a set of

wave functions ψab,~pij (~r)

Finally one reconstructs the amplitude

Aab(~p) = lim
p′→p

(p′2 − p2)

∫
d3k

(2π)6

∑
ij

[
∫
d3r′e−i~p

′~rψab,
~k

ij (~r′)][
∫
d3rei~p~rψ̄ab,

~k
ij (~r)U0

ij(~r)]

k2 − p2 − iε

→
∑
ij

∫
d3rψ̄ab,~pij (~r)

∫
d3q

(2π)3
ei~q~rA0

ij(~r)

The result gets simple in partial waves.
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Decomposing in partial waves, consider the reduced radial wave-function ϕ(x):

Rij,p,l(r) = Np
ϕij,l(x)

x
, x = pr

getting equation, for the dominant S-wave, (a, b reference incoming pair)

d2ϕij(x)

dx2
+
mij
r

mab
r

[(
1−

2δmij

E

)
ϕij(x) +

1

E

∑
i′j′φ

V φ
ij,i′j′(x)ϕi′j′(x)

]
= 0 .

Boundary conditions: ϕ(0) = 0

At x→∞ the solution describes one incoming χaχb state and all the possible
χiχj states that can be produced in the ladder.
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Two cases for the states χiχj at ∞:

1. 2δmij < E - enough energy to produce states χiχj on-shell

2. 2δmij > E - not enough energy; states χiχj are off-shell

The radial wave functions behave at infinity as:

Rab(r)→ Cab
2i

eikabr

r
− 1

2i
e−ikabr

r
incoming pair

Rij(r)→
{ Cij

2i
eikijr

r
if on− shell

Dij

2i
e−|kij |r

r
if off − shell

every other χiχj

(Normalization consistent with Rab = sin(kabr)/r for the non-interacting case)

For the reduced wave functions at x→∞ (write ϕabij for the initial state ab)

with qij = mij
r /m

ab
r · (1− 2δmij/E)

iϕab − ∂xϕab = −e−ix{ i
√
qijϕabij − ∂xϕabij = 0 if on− shell√−qijϕabij + ∂xϕabij = 0 if off − shell

these b.c.’s determine the wave functions ϕabij (x)
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One then reconstructs the amplitude and find the cross section.

The (co-)annihilation cross section of the pair χaχb is
determined, up to the kinematical factor, by

σ(ab) ∝
∑
ij

Sabij · |A0
ij|2

where the enhancement factors with our normalization are
(for the S-wave)

Sabij = |∂xϕabij |2x=0 .

8



The Sommerfeld effect can be very large when there is a resonance.

An example in the case of just one channel for a Yukawa potential α
r
e−µr
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cross-section enhancement as a function of the co-annihilating mass in Tev,
for µ = 90 Gev, α = 1/30 and an incoming velocity v = 10−3
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The resonant Sommerfeld enhancement also occurs for higher partial waves.

It is computed by taking higher derivatives of the reduced wave-function at
the origin.

An example for the P-wave l = 1
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106

109

1012

enhancement as a function of m(Gev) for v = 10−3 v = 10−4 v = 10−5 . Here
α = 1/30, µ = 90Gev.

In the following applications we consider the dominant l = 0 S-wave.
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The enhancement depends on the spin of the initial state, taken to be two
non-relativistic fermions.

Project the cross section in the singlet and in the triplet spin-state,
and multiply each projection by a different enhancement factor.

Describe a fermion-antifermion (Dirac or Majorana) pair by

|Φij
γ 〉 = Nij

∫
d~z ψ̄i(~z)Oγψj(−~z)|0〉Φij

γ (z).

For a (Dirac) fermion-fermion pair take ψ → ψc.

The spin singlet S = 0 and the spin triplet S = 1 are encoded by
(extending M.Drees,J.M.Kim,K.I.Nagao PRD2010 arXiv:0911.3795) :

S = 0 : Oγ ≡ γ5 , S = 1 : Oγ ≡ ~γ · ~S ,

Check, taking the non-relativistic large components :

ψ̄a =
(
a†↑ a†↓ 0 0

)
ψb = Cψ̄Tb

ψ̄aγ5ψb = −a†↑b
†
↓ + a†↓b

†
↑ ψ̄aγ3ψb = −a†↑b

†
↓ − a

†
↓b
†
↑

The normalization is Nij = 1/
√

2 i 6= j Nij = 1/2 i = j
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To compute the enhancement, evaluate how the coupling in front of the
potential depends on the spin state.

Take the interaction (Γ denoting a generic gamma matrices structure)

Vint = g2
Γ

∫
d~xd~y ψ̄k(x)Γψi(x)V φ

ki,jl(~x− ~y)ψ̄j(y)Γψl(y),

where V φ
ki,jl(r) =

gΓ
ki
gΓ
jl

4π
e−mφr

r
is the non-relativistic potential due to the

propagator of the boson exchanged between the two vertices. In the
non-relativistic limit only Γ = 1, γ0, γjγ5 can contribute.

Compute Vint ·
∫
d~z Nijψ̄i(~z)Oγψj(−~z)|0〉Φij

γ (z)

by doing contractions:

〈ψi(x)ψ̄i(z)〉 → δ(~x− ~z)
1 + γ0

2
〈ψ̄l(y)ψl(w)〉 → −δ(~y − ~w)

1− γ0

2
,

getting

Vint ·Φij
γ (z)→ Φkl

γ (x) = c(klij, γ)V φ
kl,ij(|~x|) Φij

γ (x)

The evaluation of c(klij, γ) fixes the strength of the potential in the
Schrödinger equations.
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A benchmark model

only the fermions of the MSSM and their SU(2)× U(1) interactions :

- a triplet of Majorana fermions in the adjoint representation
call them Wino’s with a gauge invariant mass M

-two left-handed doublets in the fundamental representation
call them Higgsino’s with a gauge invariant µ−mass term

One can reorganize those fermions and their Lagrangians into:

– a Wino triplet λ+, λ− = (λ+)c, λ0 = (λ0)c (Y = 0)

LWino = λ̄+(iγµ∂µ − gγµW 3
µ −M)λ+ + 1

2
λ̄0(iγµ∂µ −M)λ0

+gλ̄+γµW+
µ λ

0 + gλ̄0γµW−
µ λ

+

– a Higgsino Dirac-fermions-doublet ψ = (ψ0, ψ−) (Y = −1)

Lh = ψ̄(iγµ∂µ − gγµW a
µτ

a +
g′

2
Bµ −Mh)ψ

where Mh = µ of the µ-term.
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RELIC DENSITY COMPUTATION

Take a set of N particles χ1, χ2, ... χN , with mass mi m1 ≤ m2 ≤ . . . ≤ mM)
such that:

i) inelastic scattering on SM thermal bath turn each state into another one
ii) χ1 is stable.

A system of N coupled Boltzmann equations for each number density ni

as after freeze out all heavier states decay into the lightest ⇒ a single
equation for n =

∑
i
ni, (e.g. J. Edsjo P.Gondolo PRD1997 he-ph/9704361) :

dn

dt
+ 3H n = −〈σeffv〉

[
n2 − (neq)2

]
P.Gondolo J.Edsjo P.Ullio M.Schelke E.A.Baltz JCAP2004 astro-ph/0406204
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The effective thermally averaged annihilation cross section

〈σeffv〉 =
∑
i,j

〈σijvij〉
neqi
neq

neqj

neq

is a weighted sum over the thermally averaged annihilation cross sections
χi + χj → X (in the dilute limit, two-body states dominate):

〈σijvij〉 =
1

neqi n
eq
j

∑
X

∫
d3pi

2Ei

d3pj

2Ej

d3pX

2EX
δ4(pi + pj − pX)f eqi (pi)f

eq
j (pj) |Aij→X |2 ,

neqi =
∫
d3pf eqi (pi) is the thermal equilibrium number density for the species i,

neq =
∑

i
neqi .

Here we will include the Sommerfeld effect: |Aab|2 =
∑

ij
S(ab)
ij |A

0
ij|2,

with Sij
(ab)

computed as said before.
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Results
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Relic density Ωh2 in the µ = MHiggsino-M2 = MWino plane,
left): perturbative case, right) with Sommerfeld effect included.

The brighter the colour the higher Ωh2. The solid line corresponds to the
value (with 1 σ) for relic density (7-year WMAP) Ωh2 = 0.1123± 0.0035.

call Wino-region M2 << µ and Higgsino-region µ << M2.

The Sommerfeld enhancement gives a sharp shift in the WMAP-Wino-region
to heavier masses; a pure Wino is found at Ωh2 = 0.11 for a mass of about

2.8 TeV.
Much milder effects of the Sommerfeld enhancement are seen in the

Higgsino-region.
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The results found for pure Winos and pure Higgsino are similar to J.Hisano
S.Matsumoto M.M. Nojiri O.Saito PRD2006 hep-ph/0212022 and M.Cirelli

A.Strumia M.Tamburini NPB 2007 arXiv:0706.4071 in the same limiting cases;

we have more annihilation channels and a careful dependence on the spin
state of the annihilating particle pair (e.g. a different coefficient −3 in the

axial vector exchange in agreement with Drees et al:2009) and a better
control of the numerical solution of the Boltzmann Eq.

Another interesting feature is a spike in the region connecting the pure
Higgsino to the pure Wino limit, towards M2 ∼ µ but still with a predominant

Wino component.
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In this region, we show in detail the ratio: relic density including Sommerfeld
enhancement divided by relic density without it.
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A thin “resonance” slice appears in the plane, starting for pure Winos with
mass mχ0 ≈ 2.5 TeV and extending to heavier masses into the region with a
sizable Higgsino fraction, where the relic density agrees with observations.

The value of the mass we find for a pure Wino 1
mW
≈ 1

α mχ0
, indicating a

possible loosely bound state: Bohr radius ∼ interaction range.
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Radiative corrections to the Sommerfeld enhancement
from corrections to the potential appearing in the Schrödinger equation.

2-body potential ⇔ sum of the 2-particle-irreducible diagrams. The crossed
box is 2-particle-irreducible:

it gives a correction ∼ O(α2)e
−2mφr

r
compare with the leading term O(α)e

−mφr

r
It is suppressed by α and it goes faster to zero for large r:

it would give a minor correction to the Sommerfeld enhancement.
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Other corrections come from the the radiative corrections to the vertex and to
the propagators.

They contain large Log’s and could re-sum to the running of the coupling
constant.

Question: should we put the coupling at the m ∼ Tev scale ?

Here two scales: m ∼ Tev, mw ∼ 0.1Tev (and momentum transfer ≤ mW)

a situation differing from the standard renormalization-group analysis with one
large overall scale;

here more similar to the case of the forward scattering.
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Radiative corrections to the vertex and propagators
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Take SU(N) (N = 2), call the vertex (suppressing group indices)

−igΨ̄γ ·WΨ

m mass of Ψ, mw mass of W , µ renormalization scale
~q2 square momentum transfer ~q2 ≤ m2

w.

V a : − igΨ̄γ ·WΨ g2

(4π)2 (−N
2

+ C(r))× (2
ε
−

2
∫ 1

0
dx
∫ 1−x

0
dy Log[(x+y)2m2+(1−x−y)m2

w+xy~q2

µ2 ]

+2
∫ 1

0
dx
∫ 1−x

0
dy (−3+4(x+y)+(1−x−y)2)m2−(1−x)(1−y)~q2

(x+y)2m2+(1−x−y)m2
w+xy~q2 )

C(r) = N adjoint and C = N2−1
2N

fundamental.

The last term is a UV -finite contribution, however IR divergent for
m2
w/m

2 → 0.

Large Log’s corrections, dropping 2/ε:

V a : − igΨ̄γ ·WΨ
g2

(4π)2
(−

N

2
+ C(r))× (− Log[

m2

µ2
]− 2Log[

m2

m2
w

] )

22



V b : − igΨ̄γ ·WΨ g2

(4π)2
N
2
× (6

ε
− 2
∫ 1

0
dx Log[m

2
w+x(1−x)~q2

µ2 ]−

2
∫ 1

0
dx
∫ 1−x

0
dy Log[(1−x−y)m2+(x+y)m2

w+xy~q2

µ2 ]

−
∫ 1

0
dx
∫ 1−x

0
4(1−x−y)(2−x−y)m2−2(x+y)~q2

(1−x−y)2m2+(x+y)m2
w+xy~q2 )

The last term is a UV -finite contribution, however IR divergent for
m2
w/m

2 → 0.

Large Log’s corrections, dropping 6/ε :

V b : − igΨ̄γ ·WΨ
g2

(4π)2

N

2
× (− 2Log[

m2
w

µ2
]− Log[

m2

µ2
]−−2Log[

m2

m2
w

])
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There are radiative corrections to the vertex induced by the Fermion Ψ
wave-function renormalization:

F wf : − igΨ̄γ ·WΨ g2

(4π)2C(r)× (− 2
ε

+ 2
∫ 1

0
dxx Log[(1−x)2m2+xm2

w

µ2 ] +

4m2
∫ 1

0
dx (2−x)x(1−x))

(1−x)2m2+xm2
w

)

We find the large Log’s corrections, dropping 2/ε:

F wf : − igΨ̄γ ·WΨ
g2

(4π)2
C(r)× (Log[

m2

µ2
] + 2Log[

m2

m2
w

] )

By summing the V a, V b, F wf contributions, the large Log’s containing m2 in
the argument disappear:

−igΨ̄γ ·WΨ
g2

(4π)2

N

2
× (− 2Log[

m2
w

µ2
])

Actually, by performing integrations by parts in the integrals over the x, y
parameters, it is seen that for ~q = 0 the sum of the three contributions is

exactly equal to

−igΨ̄γ ·WΨ
g2

(4π)2

N

2
× (

4

ε
− 2

∫ 1

0

dx Log[
xm2

w

µ2
])
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This is consistent with the Slavnov-Taylor identities:
ZΨ̄WΨ = 1 + V a+ V b ZΨ = 1− Fp

ZΨ̄wΨ

ZΨ

is the same for any Ψ ⇒ it cannot depend on the Ψ mass m.

To complete the survey of the radiative corrections, we include the correction
induced by (one-half of the) Gauge boson W wave function renormalization:

G wf :− igΨ̄γ ·WΨ
g2

(4π)2
× (N

5

3ε
−

5

6
Log[

m2
w

µ2
]}+ ”matt”)

where ”matt” denotes the contribution of the matter, i.e. leptons, quarks and
possibly higgs, of the form

”matt” = −(#)(2
ε
− Log[m

2
w

µ2 ]) (here we show large Log’s only).

This correction does not depend on the fermion mass m
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By summing everything we get the total correction to the coupling constant g
( dropping c0/ε absorbed by a renormalization at a reference scale):

g(1 +
g2

(4π)2
× ({N

11

3
− (#)}{−

1

2
Log[

m2
w

µ2
]})) ≡ g(m2

w)

At the lowest order we recover indeed, with g = g(µ2):

g(m2
w)2 =

g(µ2)2

1 + g(µ2)2

(4π)2 {N 11
3
− (#)} Log[m

2
w

µ2 ]

that is the standard running of the SU(N) coupling constant at the scale mw.

In conclusion:

by taking the coupling constant g(m2
w) at the m2

w scale, the radiative
corrections to the vertex Ψ̄γ ·WΨ (appearing in the evaluation of the

Sommerfeld effect) are negligible
for ~q2 ≤ m2

w << m2 (actually, no correction at all for ~q2 → 0).

The same result holds for the U(1) interaction due to the U(1) Ward identity.
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