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POSITRONS & ELECTRONS in CRs

Secondary e- & e*: nuclear reactions on the ISM

P
e SNRs & pulsars

Primary { e pulsars

e & e: DM annihilation/decay
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Propagation of e* & e

Delahaye, Lavalle, Lineros, FD, Fornengo, Salati, Taillet A&A 2009

T. Delwhsyw sl sl (ZO08)

Diffusive semi-analytical model: T T T T
Thin disk and confinement halo
Free parameters fixed by B/C

Above few GeV:
only spatial diffusion and
energy losses

frociion of the positron signal

Energetic positrons
& electron
are quite local




Energy losses for positrons/electrons

J.I:I||"" . Limeros® § ||.:'I'||':-|.- ."l.:'.l‘l'
Bremsstrahlung
5 T 10° ]
€ . e i
— [nverse Compton and synchrotron
TE
P liabatic | G
. V- - Vo — Adiabatic losses -
—plee) = { TV VO e 3
+Rynge s Bremsstrahlung ‘E 10° | i
+HK,;ng +3ln + 19.58 [onisation. =
L M E lavese Uamplon
E :|.-||| :‘I:-'I:-C.!'I:'-\.":l."ll'.
g .
= 10 y
'||':|5' S B B R Y T T

10° 10° 10° 10° 10°

Kinetic energy |[MeV]|

Synchrotron and Inverse Compton™ dominate

*IC=scattering of e- on photons (starlight, infrared, microwave)



2-zone Semi-analytic Diffusive Model

Maurin, FD, Taillet, Salati ApJ 2001; Maurin, Taillet, FD A&A 2002

& talks by D. Maurin, P. Salati, A. Putze
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Results on Observed Prim/Sec

Maurin, FD, Taillet, Salati, ApJ (2001) Maurin, Taillet, FD A&A (2002)

Systematic scan of the parameter space
6 free parameters: diffusion (K,9), convection (V,),

acceleration(a), reacceleration (V,), diffusive halo (L)
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Only model WITH convection AND reacceleration
Kolmogorov (8=0.3) spectrum disfavoured, § ~ 0.6-0.7, K, ~ 0.003-0.1 kpc?/Myr

No need for breaks in K(E) or Q(E), also for p.and He
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Putze, Derome, Maurin A&A 2010

MCMC results on B/C AND radioact
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Secondary positrons

(from CRs inelastic interactions
on the interstellar medium)



Secondary e* & e production

Spallation of proton and helium nuclei on the ISM (H, He)
Delahaye et al. A&A 2009

p+H > p+A* > p+1° & n+1  (mainly below 3 GeV)
p+tH > p+n+ 1r
p+tH > X + K&

Dif ferent parameterizations of cross sections and incident p energy

T Delshaye et al (2008} T Delahaye ef al (2008}
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Secondary e* & e source term

T. Dalahepe =l sl (20005

------------------ Tan & Ng
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Effect of production
cross sections is not negligible

Effect of proton flux
determination - negligible



Positron flux: data and predictions

Same propagation models:

Positrons as secondary CRs
are well fit by predictions

Uncertainties due to
propagation: 3-4

Delahaye et al. A&A 2009

T. Delahaye et al. (2008)
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Secondary positrons +
secondary electrons

+ primary electrons from SNR



Paositron Fraction
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Positron Fraction by Fermi-LAT

Mittshumsiri @ Fermi Symposium, Rome 2011

Charge discrimination using the Earth Magnetic Field
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Flux=E* {8 sr'im? GeV?

10f

10

Positron/electron: data and predictions

Adriani et al. 2011
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Dark Matter interpretation of

the positron fraction



Propagation of positron from
WIMP DM (neutralino) sources
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Positron fluxes: effect of annihilation channels
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Direct annnihilation in
e+, or in tau, are harder
than bb or gauge boson

In typical SUSY models
annihilation in leptons is
suppressed wrt quark
production

Uncertainties on
primaries is
3-5, depending on:

- Energy
- Annihilation channel
- DM distribution
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Supersymmetric DM interpretation of Pamela data
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Boost factor from e  and e*/e*+e-
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Supersymmetric DM interpretation of Pamela data
Internal bremsstrahlung: xx—>e+e-y

Bergstrom, Bringmann, Edsjo PRD2008

4. E: Bergstrim, Bringmann & Edsji (2008
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Boundless literature....

SUSY interpretation (neutralino, gravitino, sneutrino): leptophilic DM
Non-thermal DM production
Dirac particles in NMSSM / KK / Minimal DM / Dark sectors

New symmeftries / New interactions / Nambu Goldston DM / Inert
Doublet /.......

In order to reproduce data, a BOOST .is needed and can be looked for in:
1.  Astrophysics
1.  Cosmology

1.  Particle Physics



Em=f for e

Astrophysical boosts: numerical simulations and
pr‘opagaﬁon Lavalle, Yuan, Maurin, Bi A&A 2008

Mazx, Inter and Min boost configurations

- Min: cored, inner NFW. M__ = 10% o= 1.3

- Infer: NEW, inner NFW, M__= 107, o= 1.9

Maz: NFW, imner Moors, I'."IrﬁrI = 1III'E. o =2
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Energy dependent enhancements



Possible astrophysical boost factors

Lavalle, Nezri, Ling, Athanassoula, Theyssier PRD 2008

Horizon simulation (similar results For via lactea)

(El) Fiducial WIMPs with m, = 200 GeV
10°* === P (from b)
—_ — e (line)
= .7
O 10
-
:F-: 10°
) -
o = .,
£ -
Q 10 = Contributions
= B
L, 40
% 1077 smooth halo only
1011 +10°M,,,, sub-halos (£ 5q)
= |}
- 4
~ !
.”}-'12 | ||||||| | 1 ||||||| | | |||||||Il
1 10 10°
T [GeV]

A big boost from DM substructure is not predicted



CR lepton puzzle & cosmological N-body simulations

Brun, Delahaye, Diemand, Profumo, Salati PRD2009

Luminosity vs distance: a statistical analysis
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Cosmological Boosts
large <ov> provided by modified cosmologies

Catena, Fornengo, Pato, Pieri, Masiero 2010

H = Hg[l+n(T/T:) Y (for T> TBBM)
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Boosts from Particle Physics: Sommerfeld effct

Calore, De Romeri, Donato 1105.4230

Upper limits from EGB y-rays
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2 Models for the EGB with unresolved sources subtraction



Analysis of e+e- data usually DO NOT consider astrophysical
uncertainties on the signal AND on the background.

Similarly, to constrain models by crossed analysis, uncertainties on the
signals and all the backgrounds must be included

Otherwise, results have restricted validity

Constraints / Crossed checks in

Antiprotons

Multi-wavelength: Radio, IR, X-ray, Gamma rays (diffuse, IC, point
sources,...)



Secondary e
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secondary e
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primary e from SNR

+

primary e* & e from pulsars



Primary e+ & e- from pulsars and SNR

e’ and e pair production in the strong PULSAR maghetoshpere
Polar cap (disfavoured by recent Fermi data) and outer gap models

High energy e- are accelerated by the strong pulsar electric field

e- synchrotron radiate gamma rays
e'/e are produced by pair conversion in strong magnetic fields of the PSR or
scattering of f of thermal X-rays

SNR accelerate e- (in the ISM) by means of
1° order Fermi acceleration mechanism



Primary positrons and electrons from pulsars

Pulsars can be the sources of energetic e

and e:

pair production in the strong pulsar magnetoshpere

Hooper, Blasi, Serpico, JCAP 2009

Profumo arxiv:0812.4457
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FERMI electrons and PAMELA positron fraction:

contribution from local pulsars (d<3 kpc)
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Primary e+ & e- from pulsars and SNR

Delahaye, Lavalle, Lineros, FD, Fornengo arxiv:1002.1910

Dalahayw, Lavalls, Linsroe, Donako & Formsngs (2010}
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Relativistic losses

_ Thomson approx.

G E) from radio data

- BHE 2T

LupusiLoop

.iE-;I I. i
" |

F .|' I-' .I-\.I':, L | |
: § e
- Vs I
= Voo i =
- K '.. L] 1 1 =
- [ | 4 1
- oa w0
[ § Y 'I' i
| Y i i
= nF L I_
ik Pt t
; : Aty |
L1 il Lyl L aasl porrnendidg g
1 10 10 1w 1w

E [GeV]

From SNR

Delabays, Lavals, Linsroc, Donato & Fornango (2013

I 1 ||||||| I ||||||| 1 1 ||||||| 1 LI 1
'L Primary e from pulsars Q= EfeEETV
- — Relativistic losses -
- — Thomson approx. Vela -
B .,-———'-"';:'\-':ﬂ_--:'\-\.x\ 7
I — ____,F—-"_ ___ __.’f -"-, —]
- — e | A e L1 -]
~ F T L VK =
S I # -_I\I -
w L J2043+2744 ! 7]
S A T
5 [ Gemind? -. |
I I \tE5 - Mokisgem _
8" E- p1uaatll A TR : E
= F aemmmeness 2 e, b N , I|II ]
- s 1 .l [ =
BB ; S = .
w [ .,.::_.,@' Tl '. L B! \ 1
=3 a 4 W o i .
‘I W 2| \
Wi S ! = : ;' b A g
E & Pige s | 3
- ..-{‘_' o . v o Emgd oL e 1 -
[ x ! RS oA oy -
: ; ] N !
& i N SR A .
o : o Ll
| £ g i A N L oa .
;i Bossmos g1
Y S N NI 1] N RO TR 1 I AN W TNT| B M AR T
1 10 10 1w 1w

E [GeV]

From pulsars



Astrophysical uncertainties in primary e-e+

Production from single source

Delahaye, Lavalls, Limsros, Donats & Formenge (2010}

Delzhays, Lavalls, Linaros, Donato & Formengo (2018)

L L L) B ) LA IR
Age effect d =500 pc
10"
w Th
--—-- Thomson approx.
PR 10 kyr
s PRty - -
o Full relativistic a0 kjrr » .
’-‘;a‘n" 100!;}[[1_../," ;,- .'”‘ Y WY
i 0 kyr
= _3‘ F, /
gt 1000 kyr -~ ri K J
é 000 kyr 7/ f / /
=it g
-5 f
@ !
w |
' Il
u-l .u' .'I
10t { IZI :'.
. |
1 0 10° 10 10! 1"
E [GeV]
Delahays, Lavalls, Lineros, Donato & Formeango 12010
T IIIIIII| T TTTTTIT T TTTITIT T IIIIIII| T T TTITIT
Spectral effect d =500 pc
10
----- Thomson approx. =
} PR toare = 10 kyr
10 .
—— Full relativistic : )
prel
—
'-L
-m. =l
= 10
L]
£
10t
g ¥=15
et =173
ﬂ-e—
w =2
107 |
y=233
o F—:z.s
|
‘u-l
.‘adl lll-.l 111111l 1 Illllllli{ 1 IIIIIII| 1 I|IIIIII | 11 1111
1 10 10 ' 1w’

10
E [GeV]

L S L B L) S S B B R AL
Distance effect Touret = 5 YT
10"
————— Thomson approx.
1wt T -
— Full relativigtic
1w’ i
— r,
= [J.}"kpc . n
s F oakge [/ I :
e . ! A
oL 10 / D3kpe
2 / | L
2 . j04 kpc
o ! § {0
{ / | 05kpe|
107 | s kpe
» f ] ere
{ ) | uskpe
| [
wt | P s kpe
{ { ! [ Ll 1kpe
JR) I FETET) R AAFWT T IR TT| WA SR RTTT R R
1 10 1w 10 10 w
E [GeV]
D=lahays, Lavalls, Linsros, Donato & Fomengo (2013)
T TTTTTIT T |||||||| T T TTITIT T |||||||I T ||||||||
Propagation effect d =500 pc
10”
————— Thomson approx.
10
—— Full relativistic bt = 10 kyT
a e
0 RN
T i
W oy !
(;mw* o . "r_r . ;J.
o4 10 T, I
@ i f A
o I \
Tt / ! |
= r
" i/ | |
- | .
10 | |
|.-I | 1 - II
1w / | - min
! | |
/ i — | med |
1w i | |
f ] ] J —  max |
1M |'.| cold I Ll IWEEET] B IR RTTTiAl
1 0 107 10 10" 10
E [GeV]

i e
S S

i




crrislsrd 1

o

E™ 4 [ Gev

1o

a0

E™ [GE'.’":L;IrI'25'15I"1]
3
)

a0

An example for all

Dalahaye, Lavalle, Lineros, Donado & Fornengo (2010)

E T T TTTII0 T T T TTTTT] T T T TTI0]] T T TTTITH
[ - distant "™ e flux n
- local SMRs —
----local pulsars * CAPRICE 34
E O HEAT 924-35
Eo— o AMSO198
r — all ]
= A
:— %‘F L ;LI::IE#T |—|].;—| _:
E - 3
it rﬁ ™ ]
q m
- m
i ]
1 L1 11111 1 |||||||| 1 L1 11111 1 111 1111
1 10 1w’ 10* 1wn*
E [GeV]

Daslahaye, Lavalle, Linaros, Donato & Fornengo (2090)
= T T TTTTTI] T T ||||||| T T ||||||| T T IIIIH_-
N e flux 3
P T aistant 7 * CAFRICE 54

- II‘"'“
— .. Dca.,”“ 0O HEAT 9485  _|
3 I AMS 01 E
r — all .
- I PL- -

hal ﬂ%‘ L]
E;'_l Pats A S % l 3
il | :
]_- i
2! E
i Ll Lo1o1iiirl L
1 1w 10! 10’ 10"

E [GeV]

contributions

Delahays, Lavalle, Lineros, Donato & Fornengo (2010]

E T IIIIIII| T IIIIIII| T IIIIIII| T T TTTITH
= g +e flux 3
[ e 8 SORSEM REIR(E
_ -—-- distant Iarel: [n] - -] E-_\__ —
st AMS01 58, HESS 05 (e))
w7 localP Y ATICOB (2]  Fermi1D (e™)_]
E R “arlu E
F— all 3
s . . 1
o . T = e _
5L gt g gy e
Cwt = By AT A =
2 Edem Al T._F’"D' 3
— [ sl o g
=" 1. -1
A gt T N
w e . -
=y E
o ]
3pd 1 L1 11111 1 IIIIIII| 1 L1 11111 1 111 $111l
1 10 1w a0’ 10
E [GeV]
Dslahays, Lavalle, Lineros, Donato & Fornengo (2040]
C T T T TTTTT] T T T TTTTT I T T mTTTTT]
: — rise y i :
P e fraction
' — ”arci =
i _ tot T
_—‘[—' ]
= ||
+ . =i -[ |_T_|
2 1 T '_é_‘ J. . ]
Ta C ]- I '_j[q .
= F — ]
T r— - i
[ T ’ i
—— '[
r i S O HEAT 9485 -
= ’_I - = HEAT 00 .
- AMSA1 07
B PAMELA 10
30% 1 [ L 11111 1 1 IIIIII| 1 11 11111l
1 1 10" 10

E [GeV]



Conclusions

Positron and electron data can be fitted by astrophyical sources
DM interpretations are possible, but less natural

Theoretical uncertainties affect predictions:
secondary e’ : ~ 2-4
astro primary e e : high
DM primary e*:~ 5

Are positrons good DM probes??
Well, difficult probes...
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