Acceptance Rates of Invertible Neural Networks on Electron Spectra from Near-Critical Laser-Plasmas: A Comparison

03.02.2023

Thomas Miethlinger^{1,2}, Nico Hoffmann¹ and Thomas Kluge¹

¹Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany ²Technische Universität Dresden, 01069 Dresden, Germany

Ion Acceleration from Laser-Plasmas

- Ultra-high intensity (10¹⁹-10²¹ W/cm²), ultra-short (20-50 fs) laser pulses
 - Energy: 1-30 J on target
 - E-fields: up to several TV/m
- Extreme conditions of matter: hot, dense plasma
 - Hot: $k_{\rm B}T_{\rm e}$ = 10–30 keV
 - Dense plasma: $n_{\rm e}$ = 5 300 $n_{\rm c}$

- Goal: <u>reliably</u> produce protons with energies around 200 – 250 MeV
 - Current world record: ~100 MeV¹ (target: plastic foils)
 - Stable production at around 60 MeV²
- Prospective applications:
 - Radiation oncology
 - Material science
 - Plasma probing

¹Ziegler: Sci Rep 11, 7338 (2021) ²Kroll: Nat. Phys. 18, 316–322 (2022)

Physical Motivation and Problem Statement

- **Major goal** in laser-ion acceleration: increase E_{i}^{max}
 - Depends on all experimental/simulation parameters, $E_i^{max}(x)$, where x:
 - Laser strength *a*₀
 - Laser pulse duration (approx. Gaussian-shaped pulse)
 - Target/plasma density n_0
 - ...

 \rightarrow Optimize parameter x in order to maximize E_i^{max}

- Physical considerations:
 - Max. ion energies are proportional¹ with mean kinetic energy of laser-driven electrons, T_e :

$$E_{\rm i}^{\rm max} \propto T_{\rm e}$$

- Definition of $T_{\rm e}$: function of electron spectrum, $f_{\rm e}(E)$
- Mostly depends² on the laser strength a_0

¹Mora: Phys. Rev. Lett. 90.18, 185002 (2003)

²Kluge T., et al: Phys. Rev. Lett. 107.20, 205003 (2011)

Ambiguous Inverse Problems in Natural Science

• Forward problem:

- We have some system with internal state, \rightarrow vector \mathbf{x}
- Through some mechanism (experiment, simulation, ...) $f(\mathbf{x})$, we measure observables \mathbf{y}
- Each measurement is called an observation y^*

Inverse Problem:

- Find possible ${\bf x}$ that would lead to an observation ${\bf y}^{\boldsymbol *}$
- However, information provided by y^* typically incomplete:
 - Information loss in forward process
 - Reduction of effective dimensionality
 → multiple x map onto same y*
 - Due to **ambiguity**, correct answer is not obvious
- Example: X-ray diffraction
 - State x: Crystal structure / atomic positions
 - Measurement y^* : Diffraction pattern

Posterior Distribution

Conditional posterior:

- Due to ambiguity, the full conditional posterior

 $p(\mathbf{x} \,|\, \mathbf{y^*})$,

has to be determined.

- Typically, we try to solve an inverse problem by finding a representative sample

 $\{x\},$

that approximates $p(\mathbf{x}|\mathbf{y^*})$, and fulfills with $f({\mathbf{x}}) = \mathbf{y^*}$.

- <u>General problem</u> concerning many of our observables:
 - Proton spectrum $f_i(E)$
 - Electron spectrum $f_e(E)$ (relevant for this work)

• ...

Particle-In-Cell (PIC) Simulation Setup

- Generate data using PIC simulations:
 - Hydrogen target; initially cold (0K), fully ionized
 - Simulation box: 240 μm x 0.25 μm
 - PBC in transverse direction → (quasi-)1D simulations
 - Large parameter space, including both overdense and near-critical regime:

 $0.2 \le n_{\rm e}/\gamma \le 50$

- Numerics:
 - $\lambda_{\rm L} / \Delta x = 64$
 - CFL = 0.99
 - 50 PPC
- Assume pre-plasma scale length ℓ at front
 - \rightarrow 5 simulation input parameter
 - Parameter chosen via quasi Monte-Carlo (QMC)
 - Budget: 5000 simulations in total (code: Smilei^{*})
 - → $(0.8 \cdot 5000)^{1/5} = 5.25$ sims per dimension

^{*}Derouillat: Comput. Phys. Commun. 222, 351-373 (2018)

 Table 1. Parameter space for PIC simulations.

Quantity	Symbol	Unit	Min	Max	Scaling
Normalized vector potential	a_0	1	2	22	linear
Full width at half maximum	τ	fs	20	50	linear
Number density (bulk)	n_0	$n_{ m c}$	3	50	linear
Target thickness	D	μm	0.1	10	square
Pre-plasma scale length	ℓ	nm	1	1000	cubic

Synthetic Electron Spectra

- Measure electron spectra $f_{\rm e}(E)$ 500 fs after laser-maximum reaches target front
- Many orders of magnitude present in electron spectra → <u>nonlinearly</u> transform spectra

 Represent transformed spectra via a <u>linear basis function</u> model from PCA:

$$\tilde{f}_{\rm e}(E) \approx \sum_{k=1}^{6} c_k v_k(E)$$

 Train a <u>surrogate model</u> (multilayer perceptron) to predict PCA coefficients

Acceptance Condition

• Problem statement:

- Given an observation y^* , return a representative sample $\{x\}$ of $p(x|y^*)$ w.r.t. a reference model f for the forward process.
 - Define a distance / measure of (dis)similarity d, and threshold distance ε
 - Accept (i.e., add to solution set) proposed x if <u>acceptance condition</u> is fulfilled:

$$d(f(\mathbf{x}), \mathbf{y}^*) \le \varepsilon$$

Thomas Miethlinger · Computational Radiation Physics · www.hzdr.de/crp t.miethlinger@hzdr.de

Solution Strategies for Inverse Problems

• Approximate Bayesian Computation (ABC):

- Propose randomly drawn parameter vector x
- Check x for acceptance criterion.
- Search Algorithms
 - Start at some initial parameter vector \mathbf{x}_0
 - Iteratively improve solution via search algorithm
- Invertible Neural Networks
 - Novel method
 - Different architectures / approaches exists
 - Discussed later
- Markov Chain Monte-Carlo (MCMC)
 - Not discussed here

Approximate Bayesian Computation

• (Standard) ABC:

- Propose randomly drawn parameter vector x
- Check x for acceptance criterion.
- Quasi ABC:
 - Construct low-discrepancy sequence
 - Propose parameter vector x according to sequence
 - Check x for acceptance criterion.

Informed ABC:

- Include prior knowledge to sampling procedure
- In our example, due to physical considerations:
 - $T_{\rm e}=T_{\rm e}[f_{\rm e}(E)]$
 - but also: $T_{\rm e}=~T_{\rm e}(a_0)$
 - sample $a_0 \sim p(a_0 | T_e[f_e(E)])$

Invertible Neural Networks

Mode of action of an INN.¹

- Mapping from in- to output is bijective: inverse (= INN⁻¹) exists
 - Introduction of latent space z
- Train forward process $x \to [y,\,z]$ jointly with inverse process $x \leftarrow [y,\,z]$
- Generate set of "input vectors":

$$\{\mathbf{x}\} = \mathrm{INN}^{-1}(\mathbf{y}, \mathbf{z} \sim \mathcal{N}(0, 1))$$

Invertibility by introduction of latent vector z:

```
\dim(\mathbf{x}) = \dim(\mathbf{y}) + \dim(\mathbf{z})
```


Thomas Miethlinger · Computational Radiation Physics · www.hzdr.de/crp

Benchmark Experiment

1. Prepare ground-truth value $y^* = g(E)$

- Select/specify ground-truth spectrum, $f_{\rm e}(E)$
- Nonlinearly transform spectrum
 - Filter, take logarithm, etc.
 - Project onto PCA space $\rightarrow g(E) = \mathbf{y}^*$

2. Prepare proposal spectra $\{f(E)\}$:

- Use inverse solver to generate $\{x\}$
- Compute $\mathrm{MLP}(\{\mathbf{x}\}){=}\{\mathbf{c}\},$ the set of proposal $\underline{\mathsf{PCA}\ coefficient}$ vectors
- Compute proposal spectra from $\{c\} \rightarrow \{f(E)\}$, the set of proposal spectra

3. Acceptance criterion:

- Check if relative error:

$$d[f(E), g(E)] = \frac{||f(E) - g(E)||_2}{||g(E)||_2} = \frac{\sqrt{\int (f(E) - g(E))^2 \, \mathrm{d}E}}{\sqrt{\int g^2(E) \, \mathrm{d}E}} \le \varepsilon$$

is fulfilled (relative L2 distance).

If yes \rightarrow add to solution set

Conditional Posterior: Revisited

- **Typical:** High-dimensional problem \rightarrow 2D projections
- Reasonable to (initially) assume multivariate Gaussian
 - Compute correlations/covariances
- − Smaller ε → probability "localizes"

Acceptance Rates

Fig.: Acceptance rates of different approaches in dependence of acceptance threshold ϵ , averaged over 800 different electron spectra.

Runtimes

Fig.: Time per solution (acceptance) for different approaches in dependence of acceptance threshold ε , averaged over 800 different electron spectra.

Conclusion

Conclusion

- INNs need thorough hyperparameter optimization for hard problems
- INNs strongly benefit from dimensionality-reduction techniques
- Sampling time of INNs similar to ABC
- Acceptance rates:
 - ABC shows the worst performance for small ε
 - Partial improvement via quasi-random numbers
 - Informed prior increases acceptance rates by about ×2.
 - HC has the worst performance for high ε , but the highest performance for small ε .
 - INN outperforms ABC by \times 10, but has difficulties for small ε .
- General tradeoff: accuracy ↔ speed

→ Use composite algorithms (INN + "refinement" via, e.g., HC)

Acceptance Rates of Invertible Neural Networks on Electron Spectra from Near-Critical Laser-Plasmas: A Comparison

03.02.2023

Thomas Miethlinger^{1,2}, Nico Hoffmann¹ and Thomas Kluge¹

¹Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany ²Technische Universität Dresden, 01069 Dresden, Germany

Optimized Inverse Solver: INN-HC

Algorithm 1 Inverse solver optimized for low acceptance thresholds ϵ .

Assuming: $\epsilon \ll \epsilon_{\text{bound}}$ 1: procedure INVERSESOLVER($\mathbf{y}^{\star}, m, f, \text{inn}, d, \epsilon, \alpha$) \triangleright Vertically stack \mathbf{y}^{\star} , i.e. $\mathbf{Y}^{\star} \in \mathbb{R}^{m \times n_{\mathbf{y}}}$ $\mathbf{Y}^{\star} \leftarrow \operatorname{vstack}(\mathbf{y}^{\star}, m)$ 2: $\triangleright \mathbf{Z} \in \mathbb{R}^{m \times n_{\mathbf{z}}}$ $\mathbf{Z} \leftarrow \operatorname{rand}(\mathcal{N}(0,1),(m,n_{\mathbf{z}}))$ 3: 4: $\mathbf{X} \leftarrow \operatorname{inn}^{-1}([\mathbf{Y}^{\star}, \mathbf{Z}])$ 5:for *i* in 1, ..., *m* do 6: $\mathbf{x} \leftarrow \mathbf{X}_{i,.}$ if $d(\mathbf{y}^{\star}, f(\mathbf{x})) > \epsilon$ then 7: 8: $\mathbf{x} \leftarrow \text{FirstChoiceHillClimbing}(\mathbf{y}^{\star}, f, d, \epsilon, \mathbf{x}, \alpha)$ 9: $\mathbf{X}_{i..} \leftarrow \mathbf{x}$ 10:return X 11: procedure FIRSTCHOICEHILLCLIMBING($\mathbf{y}^{\star}, f, d, \epsilon, \mathbf{x}_{0}, \alpha$) 12: $\mathbf{x} \leftarrow \mathbf{x}_0$ 13:while $d(\mathbf{y}^{\star}, f(\mathbf{x})) > \epsilon$ do 14: $\boldsymbol{\xi} \leftarrow \operatorname{rand}(\mathcal{U}([-1,1]),(n_{\mathbf{x}}))$ \triangleright Generate vector with random direction 15: $\boldsymbol{\xi} \leftarrow \boldsymbol{\xi}/|\boldsymbol{\xi}|$ \triangleright Normalize to unit length $\tilde{\mathbf{x}} \leftarrow \mathbf{x} + \alpha \boldsymbol{\xi}$ 16:17:if $d(\mathbf{y}^{\star}, f(\tilde{\mathbf{x}})) \leq d(\mathbf{y}^{\star}, f(\mathbf{x}))$ then 18: $\mathbf{x} \leftarrow \tilde{\mathbf{x}}$. 19:return x

Search Algorithms

Instead of trying uncorrelated solutions randomly, we may try to improve the solution <u>incrementally</u>.

• First-Choice Hill-Climbing:

- Start at random position in parameter space
- Propose new position

$$\dot{\mathbf{x}} = \mathbf{x} + \alpha \boldsymbol{\xi},$$

where α is the "learning rate", and $\boldsymbol{\xi}$ is a unit vector with random direction

- Check $\tilde{\mathbf{x}}$ for acceptance criterion
 - If accepted, start at new random position to restrict ourselves on uncorrelated samples (same as in ABC)

Gradient-based methods / optimizer:

- More involved, faster
- Preferred if expressions for gradients are available
- \rightarrow Doesn't work with black-box models
- Example: Adam, SGD