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Motivation

New generation (4th) of synchrotron and FEL facilities

• Diamond II 

• Planned upgrade

• ESRF Extremely Brilliant Source (EBS)

• In user mode since 2020

New science opportunities require improved 
instrumentation

• X-ray detectors

• Extended dynamic range

• Shorter time domains: intrinsic time resolution and frame rate

• Detection of high energy photons

Photon Energy (keV)
10 keV 100 keV

B
ri
lli

a
n
ce

 [
 p

h
o
to

n
 /
 s

 /
 0

.1
B

W
 /
 m

m
2
 / 

m
r2

 ]

10
18

10
19

10
20

10
21

10
22

876 9 876 9432 5

    U22    Old Lattice

    U14.5 Old Lattice

    U14.5 EBS Lattice

Example of ESRF brilliance gain

[photons/s/0.1BW/mm2/mr2]

×100

×230

Schematic of current Diamond and future 

Diamond II lattice

3



DynamiX and XIDER projects
DynamiX XIDER

“Low energy” single-crystal diffraction 

• “Soft” organic samples (e.g. protein crystals)  

• Energy range: 15 to 30 keV

• Data accuracy is a must (crystal structure determination)

• “Long” integration times:  ~10 µs to (many) ms

• Frame rate determined by integration time

“High-energy” time resolved diffraction

• “Hard” inorganic samples (often polycrystalline) 

• Energy range: 30 to 100 keV

• Sensitivity to fast changes is crucial

• Sub-µs repetition  (limited by beam time structure)

• Continuous and burst mode readout (memory) 

Different target applications and parameter space! 4



XIDyn collaboration
Common technical choices

• Readout concept

• High-flux CZT

• Data Acquisition Framework

XIDyn collaboration

 Started in 2022

 Development of a common platform

 Attempt to merge both designs

Front-end concept High-flux CZT 

(Redlen & Due2Lab)

Data Acquisition System
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Readout Concept

Common “pixel” requirements

• Pixel size: 100 µm

• Conceived for high-Z sensors → Cd(Zn)Te

• High dynamic range:

• Single photon sensitivity

• Up to ~ 109 photons/s/pixel  (or above if possible)

• Operation with “continuous” and “pulsed” beams 

• Nearly 100% duty-cycle operation should be possible

Focus on XIDER architecture

Similar considerations for DynamiX
Continuous mode

(high flux)

Pulsed mode

(time resolved )

176 ns

Example of Diamond II fill pattern

Example of ESRF-EBS fill patterns
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Readout Concept

Continuous conversion front-end with one stage

• Charge-sensitive amplifier (CSA) collects charge

• Charge pump removes well-defined charge packets
(eq. to n photons) from the input node

• Single photon sensitivity 

• Infinite dynamic range (ultimately limited by counter depth)

• Pumping must be fast enough to handle the photon rate 

• Mostly insensitive to CSA saturation

• Data output is digital

Schematics

Signal sequence
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Readout Concept
Continuous conversion front-end with two stages (pipeline)

• First stage (coarse) → high dynamic range

• Second stage (fine) → single photon (or sub-photon) resolution

• Transfer stage in between

Readout implementation discussed in: J. Inst. 16 P03023

https://doi.org/10.1088/1748-0221/16/03/P03023

Input
signal   A/D

Coarse Stage

  A/D

10 bits 4-6 bits

Digital logic

Memory

Fine Stage8 photons 1 photon
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Flexible front-end

Continuous mode

(high flux)

Pulsed mode

(time resolved)

176 ns

Filling Mode: 7/8 + 1

2.46 μs 176 ns 176 ns

2.82 μs

868 bunches 1 bunch

Filling Mode: 16 bunch
176 ns

1
16

2.82 μs

Single bunch mode with 16 equally spaced X-ray bursts per period separated by 176 ns in time.

Flexible front-end to cope with both modes

5.7 MHz
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Continuous illumination
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time
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Pixel value0

Exposure time

sliced into N 

subframes
Integrate

Digitise and 

Discriminate Accumulate

Per-pixel level

Incremental digital integration discussed in: J. Inst. 15 C01040

https://doi.org/10.1088/1748-0221/15/01/C01040
Standard integration

• Leakage accumulated

Digital Integration

• Integration

• Digitization 

• Accumulation

Incremental digital integration concept
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Pulsed illumination

Features

• Fast front-end (rise time ~10-20 ns)

• 192×16 bit RAM storage per pixel

• Dynamic range limited by charge pump 
frequency

• Major limitation: reset and transfer time

Example for XFEL 

• fburst: 1 MHz

• fcp: 200 MHz

• Nph: 8 ph

• DR: 8×200MHz/1 MHz ~ 1600 ph

Full-custom RAM design

1 μs 

X-ray pulse

fcp

Dynamic range can be easily adapted with bigger packet size
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On chip data handling

Custom-designed telegram protocol

• Maximum flexibility in data taking 

• Sends commands to the ASIC channels on frame-level for 
data storage and readout 

• Allows for event-by event decisions, like triggering or data 
rejection.

Telegram concept discussed in “Concepts for the Data Flow 

Control on the XIDer Readout ASIC” D. Schimansky, conference 

record ULITIMA 2022, under publication
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Telegram protocol storage mode examples 

• There are many more modes

• Actual choice depends on the 
user’s requirements 
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Prototypes
ASIC design

The XIDER pixel functionality is particularly complex 

 Fast analog front-end

 In-pixel analog-to-digital conversion

 Digital logic, sequencer, multiple modes of operation

 Built-in memory 

× Power hungry

The pixel design has progressed incrementally

• Six chips (T1 to T6) designed so far

• Not all the chips have used for X-ray testing

• Last X-ray measurements with T4: investigation at 

the pixel level

• T7 is planned

More info on T6&T7 in the last section

T1!

T2

T3

T4

T5

T6

ASIC T6: 16×16 pixels 

T7

ASIC T4: 4×4 pixels 

X
ID

y
n

X
ID

E
R

TSMC CMOS 65nm 
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Prototypes

4×4 mm² 

1-mm thick

CdTe

ASIC T4 

65 nm

Prototypes T4

• CdTe-ohmic (Acrorad) or CZT (Due2Lab & Redlen)

• 1 mm thick CdTe (ohmic contacts)

• 2 mm thick high-flux CZT

• 4×4 matrices of 100 or 200 µm pitch

• TSMC CMOS 65nm technology (version T4)

• Interconnection by Polymer Assembly Technology 

Characterization

• The initial investigation work was done with CdTe assemblies

• CdTe devices perform poorly

• Instability and irreproducibility of dark/leakage current

• High-flux CZT assemblies available only very recently

• Measurements taken both with 30 keV X-rays at BM05/ESRF and with LED 
sources at the lab

100 µm

200 µm

CdTe
(Acrorad)

High-flux CZT
(Redlen / Due2lab)

Cd(Zn)Te sensors

Sensor-ASIC prototype
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Calibration
Parameters to be calibrated Threshold calibration Charge packet calibration

Parameters to be calibrated

• Thresholds and charge pumps (×2)

• All trimmable with 10-bit DACs

• Using internal (or external) charge injection
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Characterisation
Example of calibrated channel Dynamic range vs charge pump frequency

• Internal injection circuit

• Coarse stage counts in packet of 8 photons

• Fine stage in packets of 1 photon

• Mid-tread response

• Electronic noise: 350 e- rms

• External injection circuit

• Dynamic range can be extended with charge pump 
frequency

• Dynamic range already approaching 0.7×109 ph/s/pixel

19



Time-resolved capabilities
Example of 4-bunch full orbit scan

2.82 μs

Filling Mode: 4 bunch
704 ns

1 4

Single bunch mode with four equally spaced X-ray bursts per period separated by 704 ns in time.

4-bunch mode

XIDER active subframe of ~100 ns

Photon induced signal

4-bunch filling mode: 100 ps X-ray pulses every 704 ns

Time
subframe delay

X-ray pulses

subframe interval

period: 704 ns

Concept
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High-flux CZT
XIDER T4 - CdTe sample XIDER T4 – HF-CZT sample

Afterglow/aftersignal

• Extra-charge delivered by the sensor after end of irradiation

• CdTe performs much worse than CZT

• Residual still present in HF-CZT

• For XFEL pulsed operation → effect mitigated

* Fluxes in ph/s/px
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High-flux CZT
“High-flux” CZT 

• Better charge transport properties than CdTe

• High-flux version improves hole transport properties

Redlen Technologies

• Redlen does not supply prototypes, slowly opening to the synchrotron market 

• Their sensor processing technology (e.g. pixelation) is still somewhat “rudimentary” 

Collaborating with IMEM-CNR-Due2Lab (Parma):

• IMEM reprocesses “high-flux” CZT sensors from Redlen

• Developed a suitable platinum contact technology

• First devices by the end of 2022 with very promising results:

• Low leakage current (significantly lower than CdTe)

• In terms of time stability (reduced polarization effects)

• Good linearity up to high X-ray flux densities

Linearity up to

6×109 20 keV ph / sec / 100µm pixel

HF-CZT linearity
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Common MPW design

MPW ASIC 

• DynamiX: 16×16 pixel

• XIDER: 16×16 + STFC serialiser

• 14 Gbps high-speed data serializers

• Pitch is continuous (110 µm)

• One piece of CZT over the device

Chip is alive

New ASIC/sensor prototypes under assembly

MWP ASIC: 2×16×16 pixels 

DynamiX XIDER T6 + STFC ser.

T1!

T2

T3

T4

T5

T6

T7
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Full reticle scale-up plans

• “STFC Detector Hub” funding scale up to full reticle over 
next 18 months

• Merging design: add adjustable gains/cancellations to 
match ESRF and Diamond needs

• Performance optimisation

• Power, timing distribution

• Aim for adjustable number of serialisers. For example

• 8 for high rate → 100kHz readout $$$

• 1 for low rate  → 10kHz readout $

• Use RAM to sum and keep flux capability or sum sequence 
of frames, rolling buffer, veto, compare…

• Interested in other collaborators, requirements… this version 
and future ones

Possible merged XIDyn design
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Thank you for your attention


