

Polimi experience towards development of new Frontend solutions for next generation of EuXFEL detectors

Carlo Fiorini

Politecnico di Milano and INFN, Milano, Italy

Workshop on "Future Detectors for the European XFEL", Hamburg, 18th of Sept. 2023

OUTLINE

- Front-end design for the DSSC readout ASIC
- Front-end design in 65nm for low noise readout (of UV sensors)
- 'Predictive' Gain-Switching approach
- Possible contribution to FE designs for future EuXFEL detectors

The DSSC readout ASIC

Charge preamplifier for the DSSC readout ASIC (1)

- Selectable feedback capacitor: \geq
 - 60 fF to 360 fF;
- Selectable resistor: 7, 10, 15 k Ω ;
- Dynamic range: 256 or 2560 photons;
- Energy range from 0.5 to 3 keV; \geq
- CSA current consumption of 120 µA. \geq

Charge preamplifier for the DSSC readout ASIC (2)

Programming phase

- A control loop is been implemented during the programming phase
- The loop exploits the CSA output stage;
- The loop programs the CSA output voltage to the same Filter virtual ground voltage (Offset Compensation).

Electronics noise vs. Integration time (courtesy M.Porro)

Pixel Readout in 65nm (MIRA ASIC)

MIRA Charge Sensitive Amplifier (CSA)

MIRA CSA:

- Folded Cascode Amplifier
- Buffer → Selectable R₁ for different shaping times: Fast & Slow Mode
- ICON* \rightarrow Large feedback resistance $R_{eq} = R_1(1 + K)$ for C_F discharge

* Refs:

- R. L. Chase, A. Hrisoho, J.-P. Richer: "8-channel CMOS preamplifier and shaper with adjustable peaking time and automatic pole-zero cancellation." Nucl. Instr. and Meth. A, vol. 409, 1998, p. 328–331.
- C. Fiorini and M. Porro, "Integrated RC cell for time-invariant shaping amplifiers", IEEE Trans. Nucl. Sci., Vol. 51, n°5, pp. 1953 –1960, Oct 2004.

Noise current source vs. pulse duration

• Shaping time $\tau_s \propto \frac{1}{I_K}$

- Noise current source $\propto I_K$
- Dependence between noise of *I_K* and shaping time

*Ref: Krummenacher, Francois. "Pixel detectors with local intelligence: an IC designer point of view." Nuclear Instruments and Methods in Physics Research Section A **305.3** (1991): 527-532

- Main noise current source at the input $\propto I_{out}$
- Shaping time $\tau_s \propto KR_1C_f$
- No dependence between noise of *I*_{out} and shaping time
- Buffer and left-brench ICON noise sources demagnified by a factor K² → negligible

MIRA CSA Transient Pulse and Noise - Simulations

10

Slow Mode: Slow Mode Fast Mode 30 $|\mathbf{t_{width}}|_{1\%\text{peak}} = 265 \text{ ns}$ 29 [mV] • $V_{\text{peak}} = 29 \text{ mV}$ 28 [mV] 25 25 • $Q_{in} = 1000 e^{-1}$ • $\sigma_{n,vout} = 835 \mu V_{rms}$ 20 20 out [mV] $V_{out} [mV]$ • ENC_{CSA} = $27 \text{ e}_{\text{rms}}^-$ Fast Mode: \geq 10 10 $\mathbf{t_{width}}|_{1\% peak} = 125 ns$ 5 5 • $V_{\text{peak}} = 28 \text{ mV}$ 124.9\ns • $Q_{in} = 1000 e^{-1}$ 265.4 [ns 200 300 400 500 600 100 200 300 400 500 100• $\sigma_{n,vout} = 835 \mu V_{rms}$ time [ns] time [ns] • ENC_{CSA} = $27 \text{ e}_{\text{rms}}^{-}$ $Q_{in,MAX} = 4000 \text{ e}^-$

Noise contributions - Simulations

The SuperPixel - Layout

The SuperPixel:

- **Two** mirrored pixels with adjacent digital parts
- $35x35 \mu m^2$ pixel size with $20x20 \mu m^2$ anode size
- Half-analog and half-digital pixel
- Fully-custom design for analog part, RTL design and synthesis for digital part

MIRA I CSA Transient Response - Measurements

With active probe:

- Slow Mode
- $\mathbf{t_{rise}} = 7 \text{ ns}$, $\mathbf{t_{fall}} = 150 \text{ ns}$
- $\mathbf{t_{width}}|_{1\% peak} = 261 \text{ ns}$
- $V_{amp} = 112 \text{ mV} \rightarrow Q_{in} = 4000 \text{ e}^-$

With SMA connection:

- $t_{rise} = 22 ns$
- $\sigma_{n,vout} = 750 \ \mu V_{rms}$
- $ENC_{CSA} = 27 \ e_{rms}^{-}$

 \checkmark

Gain-switching: standard approach

Gain-switching: 'predictive' approach

Features:

- Only one gain transition among multiple gains
- Relative freedom in setting the threshold
- Gain-switch decision taken quite early vs. end of integration

Implementation in a SiPM-readout ASIC

L.Buonanno, D.Di Vita, M.Carminati and C.Fiorini, "GAMMA: A 16-Channel Spectroscopic ASIC for SiPMs Readout with 84-dB Dynamic Range", (2021) IEEE Transactions on Nuclear Science, 68 (10), pp. 2559-2572.

Experimental results

Carlo Fiorini – Politecnico di Milano, Italy – "Future Detectors for the European XFEL", 18th of Sept. 2023

Implementation in a gamma-ray detector

M. Agnolin *et al.*, "A γ-Ray Detector Based on a 3" LaBr3:Ce:Sr Crystal with SiPM Readout for 80 keV – 16 MeV Energy Range with Position Sensitivity for Doppler Correction," in *IEEE Transactions on Nuclear Science*, doi: 10.1109/TNS.2023.3312424.

Gain switching statistics

Study of FE in 65nm for EuXFEL detectors

Range1: 1-20ph @1keV

ENC @50ns T_{int}: 31e- rms (S/N ~ 9.0 @1keV) ENC @100ns T_{int}: 26e- rms ENC @150ns T_{int}: 24e- rms

Range2: 20-1000ph @1keV ENC: 246e- rms \rightarrow 1.1ph @1keV

Range3: 10^3 - 10^4 ph @1keV ENC: 1880e- rms \rightarrow 6.7ph @1keV

(C_T=130fF, Range1,2 do not include 2nd stage noise contributions)

Wrap-up..

Polimi team is willing to contribute to the development of FE solutions for detectors for EuXFEL and to collaborate with other teams for new large scale ASICs.

Acknowledgments:

Matteo Porro European XFEL GmbH, Hamburg, Germany and Università Ca' Foscari Venezia, Venezia, Italy

Leonardo Nassi, Adele Ciavarella, Edoardo Fabbrica, Davide di Vita Politecnico di Milano an INFN, Milano, Italy

