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R&D activities in 65 nm CMOS technologies
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Front-end Electronics for imaging applications
• PixFEL Project (INFN Pavia/Bergamo, Pisa, Trento): developing front-end electronics for diffraction

imaging applications at FELs

• FALCON Project (UniBG, UniPV, ANL): development of a top tier detector for X-ray ptychography

IP Blocks in ASICs for High Energy Physics Applications
• CERN RD53 Collaboration
• Analog and M/S blocks

Research Groups
• University of Pavia: L. Ratti, G. Torilla, S. Giroletti, C. Vacchi, F. Shojaei
• University of Bergamo: V. Re, L. Gaioni, M. Manghisoni, G. Traversi, E. Riceputi, P. Lazzaroni, A. Galliani, 

L. Ghislotti



The PixFEL detector
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Develop a four-side buttable, multi-layer module for the assembly of large area detectors with minimum dead area

memory+digital readout

active edge 
sensor

front-end+ADC

readout
chip

hybrid board

bond
pads

high density
interconnect

low density
bump bond

low density
peripheral TSVs

active edge sensor

bump 
bonding

high density TSVs

Good efficiency from <1 keV
(optimized entrance window) 
up to 10 keV (450 um 
thickness), 100 um pitch

burst and 
continuous 
mode operation

10 (9) bit resolution, 5 MHz
sampling rate

1 kframe
wide dynamic range (1 to 
10000 photons), single 
photon sensitivity



Front-end Channel
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• Charge sensitive amplifier - dynamic signal compression 
and programmable gain

• Time variant filter – two different versions, 
transconductor+FCF and DGI

• Analog-to-digital conversion – 10/9 bit SAR ADC

• 65 nm CMOS technology (1 poly 9 metal 
stack)

• Power dissipation: 230 uW/350 uW
(depending on the filter solution)

• Cell area: 110 um x 110 um
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Prototypes and test chips
5

PFT1

PFM1

mini@sic chips, 
~2 mm x 2 mm, 

TSMC 65 nm technology

3.83 mm

4.
32
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PFM2

32x32, 110 um pitch channels 
multi-project wafer (MPW) run

half array DGI-based, half FCF-based
10 bit with MIM capacitors in PFM2

4.12 mm

4.
49

 m
m

PFM3

32x32, 110 um pitch channels 
engineering run 

DGI-based shaper only 
1, 2, 3 keV gain configurations

9 bit SAR ADC with MOM capacitors
Designed for peripheral TSV implementation



CSA with dynamic signal compression
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• |Dvout|>>VTh è Cf=Cmax, Gain=Gle

Appropriate choice of W and L to configure 
the gain in the low and high energy regime, 
under the constraint set by the preamplifier 
output range

Based on the non-linear feature of a MOSFET 
operated in inversion mode Gain Setting



Dynamic range
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ENC measurements (channel V-to-I + FCF)
8

Larger ENC in the case of 
NMOS feedback capacitor 

• larger stray capacitance at 
the preamplifier input

• the PMOS capacitance, 
being integrated in an N-
well, is less sensitive to 
noise propagating through 
the substrate



FALCON Project for Ptychography applications
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• International collaboration between ANL (Chicago, USA), UniBG and UniPV (Italy).
• Development of a top tier detector for X-ray ptychography.
• The pixelated detector will operate at frequency up to 1 MHz and a 128-by-128

matrix is envisioned.
• Moderate dynamic range at the input: 256 photons @ 5 keV, 9 keV, 25 keV.



Readout Channel
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<

Detector 
model

CSA Shaper Sample and 
Hold

Analog to 
Digital 

Converter

Comparator 
chain

• Prototype Fast Readout for
ptYchography Applications w/ 16
pixels.

• Commercial 65 nm CMOS technology.
• Single photon detection, with an ENC

of ~250 e- rms @ CD = 100 fF.

• SOT comparator chain to reject <1
input photon signals.

• 10-bit SAR ADC.
• Power consumption: ~220 µW/px.
• Area: 150 µm x 150 µm.

Injection circuit 
(shared)

• Adapts to 3 input photon energies:
5 keV, 9 keV and 25 keV.

• Input dynamic range up to 256
photons in each mode.

• RC-CR shaper with 4 selectable
peaking times (230 ns ÷ 530 ns).

150 um
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Charge Sensitive Amplifier
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Where 𝑄',+ is the charge integrated 
at each pulse.

Tδ
• Detector output modelled as in figure

(Tδ = 11.4 ns), with CD = 100 fF.
• Too short of a time for a complete

readout (CSA integration, shaping
and A/D conversion).

• CSA integration is performed in a tunable
exposure time (texp) and for t > texp the
readout is forced to idle state by a
discharging switch on the CSA.

• Signal at the switching is proportional
to integrated charge.

Am
pl

itu
de

RESETtexp



Shaper
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Architecture CR-RC + TIA + SF

Peaking times 230 ÷ 530 ns
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Equivalent Noise Charge
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• Noise in terms of equivalent charge at the input (e- rms).
• Only schematic-implementation of CSA was considered (should be the

main contributor to noise).

• The rest of the circuit is ideal.
• 500 transient noise simulations for each point.

• Shorter texp shows better noise performance.
• Longer tp enable lower noise.
• Combinations of (texp, tp) for which ENC < 200 e- rms exist.



pY16 and pYTS ASICs
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• Area of 1.7 mm x 2 mm.
• CLCC68 package.
• Elementary cells are mirrored about the vertical

axis to isolate analog from digital.
• On the left, pFREYA16 (pY16), composed by a 8-

by-2 matrix of elementary cells and peripheral
circuitry.

• On the right, pYTS, a series of test structures
arranged in the same 8-by-2 matrix fashion:
• CSA only.

• SHAP only.

• ANALOG only.
• ADC only (different versions)

• Prototype chips have been received last week,
test setup is being developed



RD53 IP blocks in 65 nm CMOS
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RD53 collaboration
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• RD53 collaboration was established to design and develop pixel chips for ATLAS/CMS phase 2 upgrades 

• The RD53 project includes 24 institutes, ~20 designers

• Extremely challenging requirements for HL-LHC
• Hit rates: 3 GHz/cm², small pixels: 50 x 50 µm²
• Radiation: 500 Mrad - 1016 neq/cm² over 5 years

• Technology: 65nm CMOS

• Characterization of the 65 nm CMOS technology in harsh radiation environment 

• Design of a rad-hard IP library (Analog front-ends, DACs, ADCs, CDR/PLL, high-speed serializers, RX/TX, ShuntLDO, …) qualified 
through a series of test chips

RD53A
Size: 20 x 11.5 mm2 (Aug 2017)

RD53B-ATLAS (ITkPix-V1)
size: 20 x 21 mm2 (Mar 2020)

RD53B-CMS (CROC-V1)
size: 21.6 x 18.6 mm2 (May 2021)

Production chips

• RD53C-ATLAS (ITkPix-V2) 
submitted in March 2023

• RD53C-CMS (CROC-V2)
to be submitted in Sept 2023



RD53 chip floorplan
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• Analog Chip Bottom (ACB)

includes building block for Calibration, 
Bias, Monitoring and Clock/Data recovery 

• Digital Chip Bottom (DCB)

synthesized logic for communication 
to/from chip, readout and configuration 

• Padframe (common to ATLAS/CMS)

includes  I/O blocks with ESD protections 
and distributed ShuntLDO regulator for 
serial powering



Analog and M/S blocks summary
18

F. Loddo - PSD13, Oxford Sept. 3-8, 2023 



Bias circuit
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• Based on Bandgap reference circuits (low sensitivity for V/I to temperature variations) 
• Tuning by means of 4 wire-bond trimming pads (no risk of SEU bit flips) à optimal value is found during wafer 

probing
• Tuned current Iref is mirrored and used by DACS for the bias of analog front-ends, CDR and other IPs

4% difference over 120°C temp. range



Bandgap reference
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• Current in R0 ∝ difference of two VGS à PTAT,  current in R1 ∝ to VGS à CTAT
• Current sum is mirrored onto R2, output is T-independent
• 5 bit trimming
• Integrated in a mini@sic prototype before pre-production RD53 submission



Bandgap reference – test results
21

10 BGRs characterized (5 ASICs) 

Vref ≈  440mV ± 10mV (conf. 16)

2 ASICs have been characterized in 
the climatic chamber at the INFN 
Pavia between -40°C and +100°C

One chip irradiated (room T) up to         
1 Grad(SiO2) TID of 10-keV X-rays.
Dose rate of about 1 krad(SiO2)/s. 

During irradiation the bandgaps were 
biased as in the real application
Radiation induced  ∆VREF ≈ 5% @ 1 Grad



Injection circuit
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• Each pixel in the chip matrix is equipped with an injection circuit for test/calibration

• Local generation of the analog test pulse starting from 2 defined DC voltages (CAL_HI and CAL_ME) distributed to all 
pixels and a 3rd level (local GND)

• Two operation modes which allow to generate two consecutive signals of the same polarity or to inject different
charges in neighboring pixels at the same time
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S0b

S1 S1b
S1b
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Cinj

PIXEL_IN

Analog Macro
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V] y = a + b x
 0.32± = 0.90 meda

 0.00014± = 0.19493 medb
 0.22± = 1.83 higha

 0.00009± = 0.19556 highb
2y = a + b x + c x

 0.30± = 2.55 meda
 0.00035± = 0.19239 medb
 8.41e-08± = 6.35e-07 medc

 0.32± = 2.00 higha
 0.00037± = 0.19531 highb
 8.88e-08± = 6.38e-08 highc

InjVcalMed
InjVcalHigh

RD53A Chip SN: 0x0C94



Injection cap measure
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• Possibility to measure the value of injection capacitor
using a dedicated circuit to define accurately the 
injected charge at the preamplifier input

• Integrated in the Analog Chip Bottom

• Two sections: the cap measure and parasitic cap 
measure. The first one consists of an array of 100 
capacitors, each identical to the injection cap à
routing metal is needed, which adds parasitic 
capacitance. An identical array with the capacitors 
removed is therefore integrated to evaluate the 
parasitic capacitance.

• The circuit is based on a charge pump with NMOS 
and PMOS transistors controlled by non-overlapping 
clocks à current in RIMUX proportional to the 
capacitance



General purpose ADC
24

• Based on a Successive-Approximation Register (SAR) architecture 

• In RD53 chips, the ADC is fed with the bunch crossing clock (40MHz). A 1024:1 frequency divider generates the 39 kHz internal 
clock driving the ADC

• The SAR ADC consists of three main circuits:
• a 12-bit DAC based on a capacitance network supplied through the reference voltage (VREF)
• a high sensitivity comparator
• a SAR logic block including the frequency divider



12-bit DAC
25

• Capacitive DAC based on a bridge structure à larger unit capacitance à better element matching
• Nonlinearity due by mismatch of the bridge capacitance and by parasitic capacitance in the DAC array
• 6 trimming bits allows to adjust Cadj to compensate the non-linearity



ADC comparator
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• 3-stage comparator with two differential operational transconductance amplifiers with diode and current source loads 
followed by a dynamic latch comparator

• The first stage input transistors are critical for linearity and accuracy
• Large transistors à improved offset and less sensitive to radiation but large G-S capacitance  (dependent on the input 

voltage!) àincreased non-linearity
• A compromise has been found to keep low non-linearity with good tolerance to radiation



Temperature sensors
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• Different temperature sensors are implemented in the RD53B 
chip :
• Three active sensors are implemented in the chip bottom 

close to the shunt LDO circuit, considered the hottest part 
of the chip
• Based on NMOS diode-connected transistor
• Large area devices -> very tolerant to the TID effect

• Two sensors based on r-poly resistances are placed on the 
top and the bottom of the chip
• Monitor the temperature difference between the 

top and the bottom of the pixel array
• NTC device implemented outside the chip with bias 

current provided from the chip 

M. Menouni - TIPP2023 CTICC - Cape Town, South Africa, 4-8 Sept 2023



Basic sensor structure
28

• IBIAS and R×IBIAS are applied consecutively to the sensor

• The temperature is calculated off-line based on the difference ΔVD

• Potential sources of temperature measurement error include the ratio R of the two sensor bias currents à
Dynamic Element Matching is used to mitigate this effect

𝑇,- =
𝑞

𝑛.×𝑘/× ln𝑅
×∆𝑉0

∆𝑉0 =
∑∆𝑉01
16



C-SLVS Driver
29

• The developed C-SLVS features a differential current-steering architecture with a voltage swing of 200 mV (programmable) on a 100 Ω termination 
resistance and a common mode of 600 mV.

• The driver architecture is based on a Bridged-Switch Current Source scheme. The 2 mA biasing current is switched through a 100 Ω termination 
resistance, according to the input data stream. The output current of the transmitter can be trimmed, by means of three configuration bits, in a 
range from 500 µA to 2.5 mA.

• To achieve insensitivity to PVT variations, a simple low power common-mode feedback has also been included. The common mode voltage is 
sensed by two resistors, which are connected to the output node and compared with a reference voltage.

SLVS Driver

Power dissipation: 2.8 mW
Area: 150 µm x 200 µm



C-SLVS Driver – test results
30

• Two ASICs are bonded directly on the PCB
• The termination resistance is connected to the driver through a 5.5 cm microstrip differential pair
• 1.2 Gbit/s CMOS PRBS signal applied to the driver input
• Transmitter output signal via Differential Probe on termination resistance

F. De Canio – TWEPP 2017, Sept 11-14, 2017



• The receiver is a rail-to-rail stage, able to detect differential signals with a common mode from 100 mV to 1 V. 

• Based on three stages
• a fully differential amplifier with a cross-coupled load and with a bandwidth close to 1.2 GHz
• a differential-to-single ended amplifier with a full swing CMOS output chip voltage
• a chain of inverters

C-SLVS Receiver
31

SLVS Receiver

Power dissipation: 2.5 mW
Area: 90 µm x 115 µm



C-SLVS Receiver – test results
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• The receiver has been stimulated with a 1.2 Gbit/s differential PRBS signal 
• 100 Ω internal termination resistance
• The receiver is followed by CML driver provided by the microelectronics group of CERN
• The minimum detectable signal at 1.2 Gbit/s is an input differential voltage of 150 mV
• The eye diagram is measured at CML output at 1.2 Gbit/s, when at the input VID = 200 mV - VCM = 200 mV is applied

F. De Canio – TWEPP 2017, Sept 11-14, 2017



Conclusions
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• In the framework of the PixFEL project, funded by INFN, a front-end chip has 
been designed in a commercial 65 nm CMOS technology 
• The front-end circuit includes a charge sensitive amplifier with dynamic compression of the 

signal, able to cope with a dynamic range from 1 to 10000 photons

• The FALCON project aims at the development of a top tier detector for X-ray 
ptychography
• a front-end able to cope with moderate dynamic range is under development. The front-end

is designed to be low power (≤ 150 μW), while an ENC ≤ 200 e- rms can be achieved in a
small pixel area(150 μm x 150 μm).

• A number of analog and M/S IP blocks in 65 nm CMOS has been designed by the RD53
Collaboration, aiming at the development of pixel readout chips for ATLAS/CMS phase 2
upgrades
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Time variant filter: transconductor + FCF
36

Flip capacitor filter (*) 
• events with a known repetition rate à time-variant shaping
• trapezoidal weighting function by feedback capacitor flipping
• performs correlated double sampling (CDS)
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(*) L. Bombelli et al., “A fast current readout strategy for the XFEL DePFET
detector”, Nucl. Instr. and Methods, vol. A624, pp. 360-366, 2010



Differential gated integrator (DGI)
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DGI transient response
38

Response to a 100 photon input signal  for 
different gain configurations at a 250 ns 

integration time 

Response to a signal from 10 to 10000 
photons at a 100 ns integration time  



Time interleaved SAR ADC
39

Two split capacitive DACs in a time-interleaved structure; for each DAC
• pre-charge during one sampling period 
• conversion during the subsequent period

No need for a dedicated stage for fast DAC charging

Avoid large current peaks due to fast 
capacitance (~pF) charge

Comparator based 
on a pre-
amplification stage 
(to avoid kickback 
noise), a second gain 
stage and a latch

SPLIT C-DAC 1

SPLIT C-DAC 2From the
shaper

b0b9
(b8)

SAR LOGIC

Vtc

discriminator

ADC
output

DAC switch control



Time interleaved SAR ADC
40

§ Sample rate: 5 MHz → 
Clock frequency = 5 
MHz × 11 = 55 MHz

§ Resolution: 2 ADC 
bins attributed to 1 ph
in the linear region 
(first 10 ph) -1
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§ 1.82 MHz sampling operation 

achieved, 10-bit conversion in 11 
clock periods (TCLK =50 ns). 
Limitations due to the comparator 
cured in the PFM2 chip 

§ |DNL| < 1 LSB → no missing codes 
§ SNR = 55.84 dB compatible with 

300 uV rms noise referred to the 
ADC input

§ ENOB = 9
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Time interleaved SAR ADC
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fs = 4.5 MHz



FALCON - Full channel transient
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Injection circuit & monitor

• A DAC sets the amplitude of the pulses.
• The shape of the pulse train is set by the strobe (STB) signal,

which steers the injected charge from a monitor (MON)
branch to the CSA and back.

• The switch on the CSA input branch is set to a fixed voltage
to avoid clock feedthrough on the CSA.

• A constant bias branch is added to improve linearity for low
DAC currents in continuous train mode.

• The circuit is split between periphery and pixel to minimise
power consumption on pixel and maximise DAC and monitor
performance, but only a single pixel of those connected can
be injected at a time.

• The MON is realized through a TIA and keeps the steering
circuit balanced.

• The MON has multiple modes to adapt to the input charge
injected, accordingly to the CSA mode.



FALCON Project for Ptychography applications
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• Micro-Computed Tomography (μCT) is limited to micrometre-resolution.
• New techniques, such as X-ray ptychography, can achieve nanometre-

resolution:
– A coherent X-ray beam is scanned across a specimen of interest,

point by point:
– Step-scan ptychography.
– Fly-scan ptychography.

– At each position a diffraction pattern is generated and a modest-
sized frame is acquired at very high rate.

– Iterative phasing techniques are applied to the obtained diffraction
patterns to achieve a super-resolution beyond lens limits.



RD53 chip floorplan
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• Isolation strategy: two different DNWs for analog and digital 

• DNW-isolated analog ‘islands’:
• Occasional PFETs using body NW for sub isolation
• DNW shorted to VDDA

• DNW-isolated digital ‘sea’:
• DNW biased at VDDD

• Global substrate not used by supply or device bodies

• Digital logic synthesized for 8 x 8 pixels to form a pixel Core

AFE

Digital logic

35um 15um

Quad

Core

Pixel



Monitoring block
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This blocks is exploited for the digitization of several sensitive 
parameters in the chip:

• Voltages or currents in different sections of the chip
• Temperature
• Total ionizing dose

The monitoring block includes:

• an analog current multiplexer (IMUX) followed by an analog 
voltage multiplexer (VMUX)

• a 12-bit ADC

IMUX VMUX


