Development of Front-End Electronics in 28 nm CMOS Technology

Luigi Gaioni for the BG/PV group

Future Detectors for the European XFEL

18-19 Sept 2023

- Introduction
- 28 nm CMOS technology (with a comparison with the 65 nm)
- Analog front-end building blocks
 - Charge sensitive amplifier gain stages
 - Feedback topologies
 - Threshold discriminators
- Flash-ADC based front-end
- Time-over-Threshold based front-end

Bergamo/Pavia 28 nm activities in INFN projects

Falaphel

- Development and integration of Silicon Photonics modulators with high speed, rad-hard electronics in 28 nm
 - INFN Padova, Pavia, Pisa, Scuola Superiore S. Anna di Pisa, UniPisa, UniMilano. (P.I. Fabrizio Palla)

 Develop a detector-grade ASIC (≈1-2 cm²) in CMOS 28 nm technology, coupled to a Silicon Photonics integrated device for high-bandwidth data communications (4D tracking, rad-hard, low threshold operation,...)

3

- Establish an operative and coordinated network for the exchange of competences at a national level and for a common R&D strategy in microelectronics
 - INFN Bari, Bologna; Cagliari, Firenze, Genova, LNF, Milano, Milano Bicocca, Padova, Perugia, Pavia, Pisa, Trento, Torino (P.I. Adriano Lai)

PiHEX Project

 Starting at the end of Sept 2023, and funded by the Italian Ministry of University and Research, focused on the design and radiation hardness qualification of analog front-end channels for pixel sensors (both for high energy physics and photon science applications) in a 28 nm CMOS technology

The 28 nm CMOS technology

- The 28 nm is the major commercial successor of the 65 nm node (used for the design of RD53 chips). It is interesting to study and compare the main **static/noise performance** parameters
- The 28 nm process
 - Minimum nominal gate length 30 nm
 - Minimum nominal gate pitch 130 nm
 - Different technology flavours
 - Low power versions, featuring low gate capacitance, low on-current, low leakage (for portable devices)
 - High performance versions, with high-k metal gate, high on-current, high leakage (higher speed, higher power consumption)
 - Building blocks described here are relevant to a high performance flavour
- From 65 nm to 28 nm
 - Reduced core supply voltage (from 1.2 V to 0.9 V)
 - Limited number of architectures that can be exploited in the design of gain stages
 - More dense digital functionalities
 - More (and complex) design rules (e.g. density requirements and physical design limits)

Layout in 28 nm CMOS

- Uniform gate orientation across the whole wafer
- Devices/circuits rotation is strictly prohibited
- Two dummy gates per side
- Main restrictions:
 - maximum transistor width (3 μ m)
 - maximum transistor length (1 μm)
 - straight vertical gates (no *L-shaped* gates)

A comprehensive introduction to the 28 nm technology from V. Liberali (UniMI) can be found at <u>https://agenda.infn.it/event/14974/contributions/27694/attachments/19786/22424/TimeSPOT_28nm_intro.pdf</u>

Transconductance efficiency

•

٠

- Simulated intrinsic gain (gm/gds) as a function of channel length, for the 65 nm and 28 nm processes
- Data reported has been taken from **devices biased at IC₀ = 0.1**, where the device lies between the weak and moderate inversion
- Limited variation of the IG at the shortest channel length

Mismatch

$$\sigma_{\Delta V_{TH}} = A_{\Delta V_{TH}} \cdot \frac{1}{\sqrt{WL}} = k \cdot \frac{t_{OX}}{\varepsilon_{OX}} \sqrt[4]{N} \cdot \frac{1}{\sqrt{WL}}$$

k is a scaling-independent constant

- t_{ox} is the gate oxide thickness
- ϵ_{ox} is the oxide dielectric constant

N is the dopant density in the transistor channel

- With scaling, t_{ox}/ϵ_{ox} decreases and N increases (slower rate) $\rightarrow A_{\Delta V th}$ decreases
- This means that, for the same device dimensions, scaling has (in principle) a beneficial impact on transistor threshold voltage matching

 This seems to be confirmed in the 65nm / 28nm comparison where the simulated threshold voltage mismatch is plotted for different gate areas (NMOS)

Noise

- Noise voltage spectrum for NMOS transistors in 65nm and 28 nm featuring (approximately) the same C_{ox}WL (~14 fF) → similar noise performance (slightly higher 1/f in the 28 nm)
- As for the 65 nm, also in the 28 nm process NMOS and PMOS devices feature similar 1/f noise behavior (in less scaled technologies PMOS has a lower 1/f noise than the NMOS), with a higher slope per P-channel devices

Front-end design

- The basic building blocks of a "classical" shaperless front-end for pixel detectors have been studied in 28 nm
 - Preamp gain stage
 - Preamp feedback network
 - Threshold discriminator

Preamp gain stage

Self cascode

- 11

Preamp gain stage: open loop gain and noise

- Larger low-frequency gain (57 dB vs 50 dB) for the regulated cascode, thanks to the local feedback (M2-M4 transistors)
- Very **similar noise performance** (with channel thermal noise of M1 being the main contribution, followed by the contribution from the load transistor M3)

Preamplifier feedback network (IFCP65-like version)

- Mf acts as a **1/gm resistor** for small signals
- Constant current source for large signals
- M1 provides a DC path for the detector leakage current

- Ri + Ci ensures **low frequency operation** of the leakage compensation circuit
- Suitable for **AC coupled** comparators (DC shift at the output due to detector leakage)

Krummenacher feedback

- Signal discharge
 - Equivalent **feedback resistor of 2/gm₂** for small signal
 - Constant current discharge $(I_K/2)$ for large signals
- Leakage current through M3 transistor (slow feedback adjusts the potential at the gate of M3)
- Big C_K is needed to ensure **stability**

Krummenacher feedback

- Equivalent noise charge (ENC) smaller than 105 e_{rms} for C_{d,max} =100 fF
- Leakage compensation circuit works fine for detector current up to 50 nA (very stable DC output)

Independent feedback networks

- Two independent feedbacks, one for the discharge of the feedback capacitor and the other for the detector leakage compensation.
- Equivalent noise charge smaller than 100 e rms for Cd, max =100 fF

Asynchronous comparators

- Two **continuous-time comparator** architectures have been investigated
 - Classical differential pair with active load followed by a CS stage
 - Transconductane stage with transimpedance amplifier (Traff)
 - **Open-loop gain** and **time-walk** performance have been evaluated (slightly smaller time-walk from simulations for the Traff version)

Clocked comparator

- Clocked, **auto-zeroed** comparator featuring low power consumption (700nW)
- Two phases operation: Reset phase (S1, S2 closed) and Comparison phase (S1, S2 open)
- Signal from CSA and threshold injected at the gate of the input transistor M1, synchronous with CLK (controlling S1 and S2)
- CSA signal larger than the threshold → positive going signal at M1 gate, amplified by two common source stages and fed to output inverters that consolidate the output logic
- Extremely low threshold dispersion (signal injected at the gate of one single transistor)

Front-end specifications and design in 28 nm CMOS

- Developing two analog front-end architectures, to be integrated in a pixel readout cell
 - Analog cell area reduced with respect to current 65 nm designs, room for more complex pixel logic

- Time-over-Threshold (ToT) based front-end → preamp + DC coupled comparator, with ToT A/D conversion of the signal + threshold tuning DAC
 - Specs mostly derived from RD53, but targeting operation at a lower threshold (< 500 electrons)
- Flash ADC based front-end → preamp + AC coupled bank of auto-zeroed comparators implementing a 2-bit flash A/D conversion
 - Zero dead-time analog channel for high rate applications (non negligible probability of having hits in adjacent bunch crossings)

ToT-based front-end

 A front-end architecture (optimized for very low threshold) is being investigated, based on Time-over-Threshold (ToT) → preamp + DC coupled comparator + 5/6-bits threshold tuning DAC

Analog processor

ENC vs detector capacitance

- Equivalent noise charge increases with detector cap
- ENC ~32 e rms @ CD = 50 fF (simulation for T=-20°C)

ENC vs detector leakage

- Equivalent noise charge for detector leakage current up to 50 nA, for CD=50 fF
- Significant (~60%) increase in the ENC at 50 nA

- Preamplifier output waveform not significantly affected by leakage
- Slight (~4 mV) increase in the preamp DC output

Flash ADC based front-end

- Preamp (**regulated cascode**) two independent feedbacks
- Ancillary blocks for detector emulation

- AC coupled, auto-zeroed comparators, operated with 40 MHz clock, implementing a 2-bit flash ADC. The design is ideally insensitive to device threshold voltage mismatch → threshold tuning DAC not required
- Overall current consumption: 5.4 uA \rightarrow 4.9 µW power consumption @ V_{DD}=0.9 V
- Elementary cell size: 25 x 50 μm² (analog+digital)
- Minimum in-time threshold: 600 e-

Flash ADC based front-end

- Zero dead-time
- Low threshold dispersion (~30 e r.m.s.)

Flash ADC based front-end

- Prototype chip including a 4x8 readout matrix has been submitted in a mini@sic run in October 2022
- Simple digital configuration and readout (shift registers)
- Prototype chip includes standalone NMOS and PMOS transistors for static and noise characterization
- We received **100 bare chips**, test on single devices and front-end channels started, irradiation campaign ongoing

Test results – single transistors

- **ID-VGS curves** for NMOS and PMOS transistors with W/L = 200/0.03, **before and after irradiation**
- Radiation-induced changes are apparent in NMOS devices operated in the subthreshold region
- Radiation campaign on-going (target TID 1Grad)

Test results – single transistors

- Noise voltage spectra for an NMOS device (600/0.18) operated at a current density close to the one in the front-end input transistor
- Results for a chip irradiated at 5 and 50 Mrad. Slight increase in the 1/f noise component of the spectrum, detectable already at 5 Mrad, for low current densities, for devices with L >> Lmin

Test results - preamplifier response

- Preamplifier have been characterized in ToT-mode (namely, with fast discharge) suitable for ToT conversion of the signal from the sensor, and in Flash-ADC mode (with slow discharge to enable A/D conversion through the in-pixel Flash ADC)
- Noise close to 75 e rms for the preamp not connected to the detector emulating capacitor

Test results - preamplifier response

 Good linearity up to ~10000 electrons, with a peaking time found to be a monolithically increasing function of the input charge

PiHEX project

- Starting at the end of Sept 2023 will be focused on the design and radiation hardness qualification of 28 nm CMOS analog front-end channels for pixel sensors for high energy physics and photon science applications
- **Two front-end channels** will be developed, optimized for HEP and FEL applications, meeting a set of challenging requirements, including extreme radiation tolerance, high spatial resolution and wide dynamic range

HEP front-end

FEL front-end

Conclusions

- Building analog blocks in 28 nm CMOS have been investigated in the framework of Falaphel/Ignite INFN projects
- Two different AFEs are begin designed in a 28 nm CMOS technology:
 - ToT A/D conversion
 - Flash A/D conversion
- Characterization of the the Flash-ADC based front-end just started
- Submission in January 2024 (mini@SIC):
 - ToT-based front-end in a 32x16 matrix of 100x25 μ m² pixels
- **PiHEX project** will start at the end of September with the goal of developing, in a 28 nm CMOS technology, front-end channels for HEP and photon science applications

Thanks for your attention!

- Elementary cell size: 25 x 100 μm² (analog+digital)
- Per-pixel analog current consumption < 5 μA
- Minimum threshold < 500 e-
- Radiation TID > 1 Grad
- Analog island layout arrangement as in RD53
- Isolation of analog circuits: Single DNW

 ~ _
 ✓ —

Continuous-time comparators

- **Time-walk** (contributed by comparator) for the two versions: schematic-level simulations with an ideal preamp with 20 ns peaking time
- **Parasitic capacitance** (Cp) added to the main nodes of the comparators

Voltage drop compensation

Krummenacher feedback

• Preamplifier output for different input charges

Time-over-Threshold

- Time-over-Threshold as a function of the input charge
- ~ linear behavior up to Qin=10 ke⁻

Pixel detectors for HEP and photon science

- Pixel detectors have become essential devices in crucial applications in high energy physics (HEP) and photon science
- Different applications with different requirements
- But also some similarities:
 - Multichannel, large area readout chips → inter-channel and intra-channel (analog-digital) cross-talk, chip integration issues, power distribution
 - Complex circuits: different IP blocks (voltage and current references, regulators, PLLs, ADCs and DACs, I/O pads), many
 different functions (data conversion and storage, sparsification, threshold adjustment, gain calibration)
 - Fast analog processing to comply with the machine and the experiment requirements
 - Large amount of data to transmit off-chip
 - Unprecedented levels of radiation: TIDs from several MGy up to 10 MGy
- Front-end electronics may benefit from scaling in terms of functional density (small pitch pixels) and digital performance analog design remains a challenge (reduced supply voltage and dynamic range, statistical doping effects). HEP designers' community is now starting investing in the 28 nm CMOS for future developments