

Current and future developments for soft X-ray detectors at MPG HLL

Jelena Ninković for the HLL team

• MPS Semiconductor Laboratory (in German: MPG Halbleiterlabor - HLL)

Central facility of the Max Planck Society (since 2013) with 40 employees: scientists, engineers and technicians + guest scientists, engineers and students

At present @ Siemens Campus Neuperlach Munich

From end 2023 @ IPP Campus Garching

- 1000m² of clean room area
- 330m² of ISO3 area
- Full 6 inch silicon process line

- 1500m² of clean room area
- 600m² of ISO3 & ISO4 area
- 8 inch silicon process line

Goal: development of fully depleted silicon radiation sensors with integrated electronics optimized for different scientific projects

From 2023 MPG HLL is part of MQV Expanding activities to Integrated photonics and Superconducting Qbits

• Inside HLL – Sensors and Systems : Design, Fabrication & Test

Device simulation, 2D and 3D

State-of-the-art layout tools

In house fabrication

@ HLL:

- sensor design and fabrication
- interconnection
- system/camera design and test

System test facilities

Sensor technology, interconnection and testing all available in-house

Wire bonding, hybrid assembly

• Devices @ HLL

Avalanche devices

Silicon drift detectors (SDD)

Jelena Ninkovic, MPG HLL

• Soft X-ray detectors - Highlights from the past

Sensor: 3.7 x 7.8 cm² 1024 × 512 pixels.

Pixel size: $75 \times 75 \ \mu m^2$ Frame time: $8 \ msec$ (up to 120Hz)

Mini SDD @ EuXFEL (SDD sensor)

M. Porro et al., The MiniSDD-based 1-Megapixel Camera of the DSSC Project for the European XFEL, IEEE TNS 68(6), pp. 1334 - 1350, June 2021

sensormini-SDD cells 128 x 256 pixels 3.0 x 6.2 cm² (chip)hex. pixel pitch204 μm × 236 μmenergy range noise peak frame rate frame storage0.25 keV - 6 keV 60 el. r.m.s. 4.5 MHz 800 frames	camera	1024 x 1024 pixels 21 x 21 cm ² 32 sensor chips 4 quadrants central hole for direct beam
hex. pixel pitch $204 \ \mu m \times 236 \ \mu m$ energy range $0.25 \ keV - 6 \ keV$ noise60 el. r.m.s.peak frame rate $4.5 \ MHz$ frame storage800 frames	sensor	mini-SDD cells 128 x 256 pixels 3.0 x 6.2 cm² (chip)
energy range 0.25 keV – 6 keV noise60 el. r.m.s.peak frame rate 4.5 MHz frame storage800 frames	hex. pixel pitch	204 µm × 236 µm
	energy range noise peak frame rate frame storage	0.25 keV – 6 keV 60 el. r.m.s. 4.5 MHz 800 frames

DSSC @ EuXFEL DEPFET Sensor with Signal Compression

Sensor

2.56 x 10.24 cm² 512 × 128 pixels

Hybrid detector								
with 8 readout ASICs (64x64)								
Pixel size:	204 x 236 µm ²							
Frame time:	220ns (4.5MHz)							

Soft X-ray detectors – ongoing developments

Various SDD projects

IAXO (INTERNATIONAL AXION OBSERVATORY)

requirements

- detection threshold 1 keV
- efficiency interval 1 ... 10 keV

single cell & seven cells SDDs

cell diameter 8 mm & 10 mm

eXTP (ENHANCED X-RAY TIMING & POLARIMETRY)

spectroscopic focusing array SFA (11 x) circular SDD effective area 0.6 / 0.9 m² @ 6 / 1 keV energy resolution < 180 eV (FWHM @ 6 keV) time resolution < 10 µsec

TRISTAN

(TRITIUM STERILE ANTI-NEUTRINO) 166-cells SDD (~ 14 x 12 array) – SDD with integrated FET

- cell format: diameter 3 mm, area 7 mm²
- chip size: 38 x 40 mm²

Extremely thin entrance window

FSP – TNG for MAXIMUS Fast Small Pixel – The Next Generation

- Sensor: 3.7 x 7.4 cm² 1024×1024 +(2x512) pixels
- Pixel size: Frame time:

36 x 36 µm² 2.5 msec (400Hz)

ATHENA Wide Field Imager

the Advanced Telescope for High-Energy Astrophysics as ESA's next-generation X-ray astronomy observatory

Sensor: 512 x 512 pixels 78.00 x 76.15 mm² rolling shutter mode 130x 130 um² Pixel size: 1.28 msec, i.e. 2.5 µsec / row Frame time: with 128 eV (singles) & 136 eV (all)

pnCCD state of the art – FSP TNG pnCCDs

• DEPFETs – state of the art technology and ongoing developments

ATHENA WFI – spectroscopic device

Sensor: **78.00 x 76.15 mm²** rolling shutter mode Pixel size: **130x 130 μm²**

First flight devices produced – 6/36 wafers

Yield 6 out of 6 wafers past all quality checks Jelena Ninkovic, MPG HLL

EDET 80k – fast direct electron detector

- 1Mpix, 60µm DEPFET pixel, 4 quadrants, 6x6 cm² sensitive
- 1-3 M electrons to store into internal gate
- **30-50µm** thin sensitive area
- 4-fold read out,
 frame rate: 80kHz
- memory to store ~60 frames

Simplified production of non linear devices

Yield of production > 80%

Super g_q DEPFETs – Super high S/N

- New DEPFET technology allows improved S/N of a factor of 3
- better S/N -> better spectroscopic applications (ENC>1e-)
- High speed readout devices
- High precision devices
- High dynamic range DEPFETs
- thinner detectors
- Smaller bias current less power in pixel area
- Thinner gate isolator higher radiation tolerance

Test production finished 4 weeks ago **Fast production mode teste**d – **10 months production time**

• MARTHA - Monolytic Array of Reach Through APDs

Initial motivation – develop low gain avalanche device with high fill factor for photon science applications

Expected features: Gain up to 20

Collection efficiencies: > **99%** Pixel pitch: given by bump bond technology and read out electronics space consumption (ATLAS 50µm) Position resolution: $<<\frac{pitch}{\sqrt{12}}$ ($<<10\mu$ m)

Time resolution:

Application dependent

Leading edge trigger: <50ps Full signal formation 50ns (for thickness 500µm)

Proof of principle production ongoing on standard thick material Finalization end of September Designed structures:

- Pixel arrays
- Strip sensors
- Diodes
- Multi Guard Ring Test diodes

• Entrance window engineering – application optimization

• Interconnection technologies

Standard wire bonding (Al and Au) Frame time: 1.28 msec, i.e. 2.5 µsec / row

Full parallel readout

dedicated wire routing flip chip technology – hybrid detectors

DSSC module With 8 CMOS chips Frame rate: 4.5MHz

Athena WFI module

Courtesy MPE

Full frame read-out DEPFET detector

- application ultra-fast X-ray timing & imaging frame rate > 100 kHz
- sensor 127 hexagonal hexagonal pixels cell diameter 800 µm

DePFET with internal storage

Interconnection technologies

All silicon module (ASM) : Sensor and Hybrid in one silicon piece

- Belle II Pixel detector tracking of high energy particles ٠
- EDET80k project development of ultra fast direct electron detectors for TEM ٠

~50µm pixel size 8M pixel detector 50kHz frame time 75 µm thin detectors Linear DEPEETs

60µm pixel size

1M pixel camera 80kHz frame time 30 and 50 µm thin detectors **Nonlinear DEPFETs**

TSV

30.07.2015 14:43 20x: 475 um x 298 um

4 side buttable module development @ HLL

TrueTile:

- Novel concept for sensor integration
- Compact and modular for high-density sensor integration
- 4-side buttable devices large sensor areas with extremely low sensitivity gaps
- Core element: Active interposer (AI) for frontend supply integration and cooling
- Multi-level development project

- Large area pnCCD as demonstrator device
 - 1 MPixel with 75 x 75 mm² pixels, 76.8 x 76.8 mm²
- Active interposer with microchannel cooling structures
- Compact camera interior for standalone operation

TRISTAN (TRITIUM STERILE ANTI-NEUTRINO)

166-cells SDD (~ 14 x 12 array)

- SDD with integrated FET
- cell format: diameter 3 mm, area 7 mm²
- chip size: 38 x 40 mm²

module

- TRISTAN sensor plane = 3×3 array
- 4-side buttable module
- perpendicular mechanical, thermal, electronic connections

Final detector

in the new lab

production

Developed

by Tristan collaboration

• XFEL requirements vs. HLL detectors

	Target values (hard X-rays)	Target Values (soft X-rays)	SDD with/without FET DAY0 like system	Non linear (Sg₄) DEPFETs 2. GEN DSSC like system	MARTHA DAYO like system/ AGIPD like system
Sensitive Energy Range	5 - 13 keV	0.4 - 3 keV	YES 0.3 – 15keV	YES 0.3 – 15keV	YES 0.3 – 15keV
Dynamic range in photons	> 5 x 10 ³ 12 keV ph./px (16.5 Me ⁻)	> 5 x 10³ 1 keV ph./px (1.4 Me [.])	soft - YES	soft - YES hard – NO	soft - YES
Dynamic range (one gain)	500-1000 12 keV ph./px (1.6-3.2 Me ⁻)	500-1000 1 keV ph./px (0.14-0.27 Me [.])	~10 ⁵ e ⁻	NLA - ~2 x 10 ⁶ e-	~10 ⁵ e-
Noise (ENC)	< 300 el. rms. ~1keV photon	< 30 el. rms. ~1keV photon	YES 30- 60 el. rms.	YES 20 el. rms.	YES Not known
Frame rate	Burst mode, 1.1 - 4.5 MHz	Burst mode, 1.1 - 4.5 MHz	YES 1.1 - 4.5 MHz	YES 1.1 - 4.5 MHz	YES 1.1 - 4.5 MHz
Sensor type	2D pixelated	2D pixelated	YES	YES	YES
Pixel size	80 - 100 µm pitch	80 - 100 µm pitch	YES 60-100μm	YES 60-100μm	YES 50-100μm
Pixel count	modular approach, max 4 Mpix	modular approach, max 4 Mpix	YES 4-side buttability	YES 4-side buttability	YES 4-side buttability
Operating pressure range	Both ambient and vacuum (below 10 ⁻³ mbar) versions needed	< 10 ⁻⁶ mbar versions needed	YES -20°C optimum RT possible	YES -20°C optimum RT possible	YES -20°C optimum RT possible

• Possible HLL activities for XFEL future detector developments

System development to be organized by collaboration partners – HLL could be coordinator of activities Keep system close to already developed systems but modify module design Sensor – pixel size to be defined by available bump bonding technology for a RO chip New RO chip needs to be developed – task of collaborative partner Thermomechanical coupling via actively cooled interposer → reduction of dead area Module design – HLL

System – to be checked what can be reused and what needs new development.

Sensor module 256x512 pixels RO ASICs 128x128 Ladder 256x1024 pixels Quadrant 1024x4096 pixels

Sensor technology:

- planarization of technology \rightarrow smaller feature size \rightarrow smaller pixels 15-20µm should be feasible
 - \rightarrow higher number of metal layers \rightarrow faster detectors
 - \rightarrow faster production time
- new DEPFET technology developed \rightarrow higher signal and lower noise \rightarrow even better sensor performance
- even thinner entrance window
- even higher radiation hardness
- Wafer thickness present standard 450 μ m, at present 1mm possible with minor adjustments \rightarrow adjustment of tools possible to 2mm
- E-beam lithography @ HLL would allow adding some CMOS structures to simplify operation of devices
- **3D integration** Wafer bonding, TSV
- wafer size $6 \rightarrow 8$ inch \rightarrow larger area devices

Looking forward to new projects in the new lab ...