Characteristics of ARCADIA Fully Depleted MAPS and Perspectives for X-ray Imaging at XFELs

"Future Detectors for the European XFEL" Workshop

18-19 September 2023

Lucio Pancheri¹

on behalf of the ARCADIA collaboration

¹University of Trento and TIFPA-INFN

Motivation

- ARCADIA (Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays): INFN-funded R&D to develop a versatile monolithic process for large-area monolithic pixel detectors
- Based on LFoundry 110nm CIS process
- Target applications:
 - Medical imaging (e.g. Proton Computed Tomography)
 - Astro-particle detection on satellites
 - High Energy Physics experiments
 - X-ray detection

CSES-01

ALICE

Joint patent INFN – LFoundry EP3701571B1 (priority 2017 – granted 2021)

L. Pancheri

Sensor concept

- Customized **110nm CMOS** process (LFoundry)
- n-type **high resistivity** active region
- Reverse-biased junction at the bottom: depletion grows from back to top
- Sensing electrodes can be biased at low voltage (< 1V)
- nwells with electronics shielded by deep pwells
- n-epi layer: reduce punch-through current between p+ and deep pwells

Wafer post-processing: starting material and backside process

Post-processing: thinning to 100 or 300µm total thickness

Post-processing: thinning, backsided **p+ implantation** and laser annealing Post-processing: thinning, lithography, backside p+ implantation and laser annealing, insulators and metal deposition

Production

Front side

Back side

Devices produced:

- Main demonstrator: 25µm pixel sensor - 512 x 512 array
- Small **pixel arrays** with different **pitch** (10 μ m 25 μ m 50 μ m) with and w/o active readout
- Strip detectors with and w/o active readout
- Test structures for sensors characterization and process qualification

Micrograph of test structures block

Sensor characteristics - IV curves

Measured on pixel test structures (arrays of pixels connected in parallel)

Pixel Capacitance-Voltage curves – comparison with TCAD models

Experimental data for different pixel layouts – 50µm pitch – and comparison with **TCAD simulation results**

Capacitance is dominated by the **perimeter** of the sensor node

Pulsed laser characterization – comparison with TCAD models

Infrared laser diode @ 1060nm, < 100ps FWHM: generation in the whole active thickness Pixel array test structures with **100μm active thickness** (maskless backside p+ implantation)

L. Pancheri

Red laser scan – test pixel arrays

- 50 μm pitch pixel test structures
- Focused red laser incident on the backside spot size 10 μ m FWHM
- Mechanical scanning with 10 μm step size in x and y

Signal peak amplitude: higher in the Pixel center (fast charge collection) Integrated signal: uniform across the pixel array

EU XFEL 2023

Pixel array cross section – backside lithography – type 3 substrates

Electrical characterization – backside termination

- Backside diodes with variable number of guard rings (GRN)
- Large bias voltage: possibility to deplete a thick sensor (tested up to 400µm thickness)

T. Corradino, Sensors 2021, 21(11), 3809 https://doi.org/10.3390/s21113809

11

Pixel characteristics

- Measured on pixel test structures
- Pixel dark current roughly proportional to sensor thickness

Sensor characteristics vs. active thickness.				
Active thickness (µm)	48	100	200	
Sensor bias voltage (V)	25	20-35	60-100	
Dark current density (pA/cm²)	100-350	230 - 500	650 - 2000	

Sensor characteristics vs. pixel size				
(@ 100µm active thickness)				
Pixel pitch (μm)	10	25	50	
Sensor area	36%	19%	16%	
(% of pixel area)				
Sensor capacitance (fF)	1.9	3	12.7	
Time for 90% charge				
collection with	4	10	31	
picosecond IR laser (ns)				

L. Pancheri

Pixel radiation hardness – ionizing radiation

TID with X-rays – Irradiation @ university of Padova, Italy Main effect: increase of pixel leakage current and capacitance with dose

Main demonstrator: 512 x 512 pixel array for charged particle tracking

- Pixel pitch: 25µm Array core area: 1.28cm x 1.28cm
- **Pixel** electronics: analog and digital. In-pixel threshold and data storage
- Architecture: **event-driven**. Pixel detecting events (charge pulses) send their address to the chip peripheral circuits
- Low **power** (20mW/cm²) and high **event rate** (100 MHz/cm²)

ARCADIA Main Demonstrator – chip floorplan

Top Padframe

AR¢ADIA Reference

Auxiliary supply, IR Drop Measure

Matrix

512x512 pixels, Double Column arrangement

End of Sector (x16)

Reads and Configures 512x32 pixels

Sector Biasing (x16)

Generates I/V biases for 512x32 pixels

Periphery

SPI, Configuration, 8b10b enc, Serializers

Bottom Padframe

Stacked Power and Signal pads

512 x 512 pixel sensor mounted on PCB

Detail of pixel layout

M. Rolo

Main prototype: charged-particle detection

Collimated ⁹⁰Sr beta source Collimator diameter: 1mm

- Total **power consumption**: 10mW/cm² at low event rates.
- Design specification: 20mW/cm² at event rates up to 100 Mevents/cm² (to be verified in a test beam)

ARCADIA MAPS: gain add-on option

- Sensors can be biased at low voltage
- DC coupling with front-end amplifier is possible

- High voltage is needed on the top side
- AC coupling of front-end amplifier is needed

ARCADIA MAPS with gain: TCAD simulation - signal shape

- TCAD simulations with MIP-like signal (80 e-h pairs per μm)
- 50µm active thickness, different gain dose splittings

Passive sensors with gain - test structures

Monolithic test devices with gain included in **engineering run** designed for ARCADIA main demonstrator

Packaged devices: suitable for testing with laser and light sources

Rectangular pad sensors

Square pad sensors

terminations

Devices with different

Test array with integrated electronics

- Sensor size limited by layout rules: suboptimal fill factor
- Devices are available. Characterization is ongoing

2-pixel layout

Stefano Durando

8x8 pixel matrix layout

Optical signal with NIR pulsed laser

Effect of Vtop - Bottom-side illumination

Laser pulse width < 100ps Wavelength: 1060nm

Work in progress

Characterization:

- Extensive **testing** of ARCADIA main array (test beam foreseen in the next months)
- **3-layer telescope** → tracking performance
- Extended radiation hardness characterization on test structures and on main demonstrator

Design:

• Sensors with high timing resolution (particle ToF – upgrade of ALICE experiment at CERN, ALICE 3 LoI approved)

Perspectives for application of ARCADIA process to XFEL detectors

Hard X-rays

- Thickness can in principle be increased to $400 500 \ \mu m$. 400 μm thickness verified on test structures.
- Backside terminations: designed for large positive oxide charge, in principle could stand high radiation dose – to be tested.
- Slow lateral drift (10s ns) in regions far from the sensor nodes: smart geometry for sensing nodes is needed for large pixels (e.g. array of small nodes in each pixel): complicated layout

Perspectives for application of ARCADIA process to XFEL detectors

Soft X-rays

• Entrance window: current backside junction depth is thin but not specifically designed for soft X-rays. Further optimization is possible.

n-epi
*
* * *
*
*
High Resistivity n-type Si
* p +

- No backside lithography is needed for small active thickness ~100 µm (reduced process cost and complexity)
- Low-gain **avalanche** signal enhancement in sensing nodes currently in development phase. Could be an opportunity to enhance the SNR for soft X-rays

Perspectives for application of ARCADIA process to XFEL detectors

Data rate and chip periphery

- Very high event rates: analog and A/D can be integrated monolithically in the pixels. Digital: **3D-integration** of dedicated readout chip in advanced logic process is needed
- Chip edge dead region: currently 300 μm for 300 400 μm active thickness. Dedicated R&D needed to minimize the size of edge region in thick sensors
- **High photon fluxes**: space-charge effects will slow down charge collection: need to be studied experimentally and in simulation. Test sensors are currently available for these studies

Thank you!

The ARCADIA collaboration:

F. Alfonsi, G. Ambrosi, A. Andreazza, E. Bianco, G. Balbi, S. Beolè, M. Caccia, A. Candelori, D. Chiappara, T. Corradino, T. Croci, M. Da Rocha Rolo, G. F. Dalla Betta, A. De Angelis, G. Dellacasa, N. Demaria, B. Di Ruzza, A. Di Salvo, S. Durando, D. Falchieri, U. Follo, A. Gabrielli, L. Gaioni, S. Garbolino, G. Gebbia, R. Giampaolo, N. Giangiacomi , P. Giubilato, R. Iuppa, M. Mandurrino, M. Manghisoni, S. Mattiazzo, C. Neubüser, F. Nozzoli, J. Olave, L. Pancheri, D. Passeri, A. Paternò, M. Pezzoli, P. Placidi, L. Ratti, E. Ricci, S. B. Ricciarini, A. Rivetti, H. Roghieh, R. Santoro, A. Scorzoni, L. Servoli, F. Tosello, G. Traversi, C. Vacchi, R. Wheadon, J. Wyss, P. Zuccon

Backup slides

Pixel Current-Voltage curves – comparison with TCAD models

Experimental data acquired for different pixel layouts

Intra-wafer and inter-wafer variations were evaluated

Process parameters in **TCAD** simulations adjusted on experimental results

Backside bias: bottom and top

The chip periphery behaves like a resistor: For substrates of **Type 1 and 2**, substrate bias can be applied both from the bottom and from the top

 V_{depl} and V_{PT} are very similar for the two considered biasing schemes

Particle detection: Monte Carlo simulation of charge and cluster size

200MeV muons - perpendicular incidence

Simulated cluster size distribution

hCluSiz

hCluSiz

hCluSiz

2000

2.329

1.187

2000

2.995

1.253

2000

3.744

1.149

10

Cluster size

Entries

Mean

Std Dev

Entries

Mean

Std Dev

Entries

Mean

8

6

Std Dev

25µm pixel pitch Simulation domain: 5x5 matrix

ARCADIA MAPS with gain: signal shape

Reference voltage: electronics GND, applied at the pwells GAIN and drift field are defined by a combination of Vtop > 0 and Vback < 0

Optical signal with NIR pulsed laser

Effect of Vback - Bottom-side illumination

Front-end board and DAQ

oscilloscope

- 2 Samtec FireFly connectors for ASIC signals (Clock, SPI, Data)
- Connection to external low jitter Clock (via SMA connectors)
- Bias to the DMAPS backside or (wirebonded) to top pads
- Independent LDOs for IO Buffers, Analog Core, Digital Core
- PCB through-hole for matrix BSI
- custom FMC-to-Firefly breakout board