

High-Z GaAs Development by ADVAFAB

J. Kalliopuska¹, D. Nalyvaiko¹, V. Gnatyuk¹, S. Vähänen¹, J. Jakubek², S. Polansky², E. Maddox³, E. Hogenbirk³, J. Lange⁴

¹ ADVAFAB Oy, Saukonpaadenranta 2, Helsinki, FI-00180, Finland

² ADVACAM s.r.o., U Pergamenky 12, 17000 Praha 7, Czech Republic

³ Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands

⁴ X-Spectrum GmbH, Luruper Hauptstraße 1, 22547 Hamburg, Germany

Content

- Advafab offering, facilities and accelerated R&D
- GaAs properties and benefits
- 3" Cr compensated GaAs wafer processing
- Results with TPX1 ADVACAM s.r.o
 - Uniformity and energy resolution
- Results with TPX3 Amsterdam Scientific Instruments
 - Spatial resolution Si vs GaAs vs CdTe
- Results with MPX3 X-Spectrum
 - Uniformity and edge response
- Results with TPX2 ADVACAM s.r.o
 - Uniformity & energy resolution
 - Signal to Noise at high flux
- Contribution for benefit of EUXFEL and further work

Advacam Semiconductors is now Advafab Oy

- Advafab offers semiconductor sensor products and services
- Hybridization and sensor manufacturing productions ATLAS, CMD, LHCb, AGIPD

A D V A F A B

Semiconductor solutions

ADVAFAB Facilities

- MICRONOVA VTT's and Aalto University's R&D infrastructure with great variety of tools for semiconductor wafer processing
- Own cleanroom facility for flip chip bonding production and electrical testing

∧ D V A F A B

Semiconductor solutions

ADVAFAB's accelerated R&D

- X-ray probing offering for Medipix family readout ASICs
- Quality assurance of flip chip bonding and sensor quality => products & research
- Targets available: Fe, Cu, In & Cd
- Framework agreement with end user partners for application specific evaluations

GaAs Properties and Benefits

GaAs properties and benefits

Benefits:

- Higher electron mobility (8800 GaAs vs 1400 Si) => "better" charge collection
- Higher average atomic number (32 GaAs vs 14 Si) => higher radiation absorption efficiency
- Small fluorescence probability and short distance of fluorescence photons (50%, 11-12 keV vs 85%, 26-31 keV CdTe)
- Wider bandgap (1.43 GaAs vs 1.12 Si) => superior radiation hardness
- Better stability (<0.1% GaAs vs >1% CdTe) => stable imaging properties

Material	Silicon	GaAs:Cr	CdTe
Average atomic weight	14	32	50
Density (g/cm3)	2.33	5.32	5.85
Band gap (eV)	1.12	1.43	1.5
Resistivity (Ohm-cm)	~1E+4	~1E+8	~1E+9
Electron mobility (cm2/Vs)	1400	8800	1100
Hole mobility (cm2/Vs)	480	400	100
$\mu \tau$ electrons	>1	~1E-4	~1E-3
μau holes	>1	1-10E-6	~1E-6
Stability (10 min)	<0.01%	<0.1%	1-10%

Si energy range

*Several sources used

GaAs properties and benefits

Benefits:

- Higher electron mobility (8800 GaAs vs 1400 Si) => "better" charge collection
- Higher average atomic number (32 GaAs vs 14 Si) => higher radiation absorption efficiency
- Small fluorescence probability and short distance of fluorescence photons (50%, 11-12 keV vs 85%, 26-31 keV CdTe)
- Wider bandgap (1.43 GaAs vs 1.12 Si) => superior radiation hardness
- Better stability (<0.1% GaAs vs >1% CdTe) => stable imaging properties

Material	Silicon	GaAs:Cr	CdTe
Average atomic weight	14	32	50
Density (g/cm3)	2.33	5.32	5.85
Band gap (eV)	1.12	1.43	1.5
Resistivity (Ohm-cm)	~1E+4	~1E+8	~1E+9
Electron mobility (cm2/Vs)	1400	8800	1100
Hole mobility (cm2/Vs)	480	400	100
$\mu \tau$ electrons	>1	~1E-4	~1E-3
μau holes	>1	1-10E-6	~1E-6
Stability (10 min)	<0.01%	<0.1%	1-10%

*Several sources used

GaAs properties and benefits

Benefits:

- Higher electron mobility (8800 GaAs vs 1400 Si) => "better" charge collection
- Higher average atomic number (32 GaAs vs 14 Si) => higher radiation absorption efficiency
- Small fluorescence probability and short distance of fluorescence photons (50%, 11-12 keV vs 85%, 26-31 keV CdTe)
- Wider bandgap (1.43 GaAs vs 1.12 Si) => superior radiation hardness
- Better stability (<0.1% GaAs vs >1% CdTe) => stable imaging properties

Silicon	GaAs:Cr	CdTe
14	32	50
2.33	5.32	5.85
1.12	1.43	1.5
~1E+4	~1E+8	~1E+9
1400	8800	1100
480	400	100
>1	~1E-4	~1E-3
>1	1-10E-6	~1E-6
<0.01%	<0.1%	1-10%
	14 2.33 1.12 ~1E+4 1400 480 >1 >1 >1	14 32 2.33 5.32 1.12 1.43 ~1E+4 ~1E+8 1400 8800 480 400 >1 ~1E-4 >1 1-10E-6

*Several sources used

3" Cr Compensated GaAs Wafer Processing

LEC GaAs crystal growth

- In scope of our search of suitable materials for hybrid imaging sensors, we have studied post-growth compensation of n-type GaAs wafers grown by LEC method
- 3" GaAs wafers were sourced from several commercial suppliers

Wafer batch	С	D	E
Diameter, mm	76.2	76.2	76.2
Thickness, um	400+-25	750+-25	650+-25
Orientation	(100)	(100)	(100)
Mobility, cm ² /V·s	n/a	4187	5080
EPD, cm ⁻²	9.3E4	5.6E4	1.1E5

^{*}Materials for electronics, Part C 23 $\,$

Cr compensated GaAs 3" wafer preparation

- After Cr sputtering, wafers were annealed in protective Ar ambient
- Subsequent wafer lapping and polishing was performed using Logitech PM5 tool in Tampere University
- Wafer level process steps, lithography and dicing were performed in Micronova VTT's cleanroom facility in Espoo, Finland
- Flip chip bonding was done at Advafab facility in Helsinki

3" Cr compensated GaAs processing: Process steps

• For sensor production GaAs wafers are passing through annealing, polishing, lithography, sputtering, dicing and flip-chip bonding steps

Chromium Compensated of GaAs Sensors Evaluated with TPX1

Stepan Polansky

ADVACAM s.r.o

Comparison to commercially available material

Advafab GaAs 2022

Spectrum of Source 1

Count [-]

- Flat field and stability comparison
- Fluorescence of Cd target was used
- Better uniformity in Advafab GaAs
- Similar stability observed

∧ D V A F A B

Semiconductor solutions

Am TOT peak position and energy resolution

Fig. 2. Full spectra of a 241 Am isotope **(a)**, taken with the GaAs-based detector at different bias voltages V (V): 10 (1), 50 (2), 100 (3), 150 (4), 200 (5), 250 (6), 300 (7), 350 (8), 400 (9), 450 (10), and 500 (11); the voltage dependence of the energy position of the prominent peak (59.5 keV) **(b)** in the 241 Am isotope spectra.

500 59.7 **Table 1.** Energies at which the prominent peak of ²⁴¹Am isotope spectra was observed at different voltages, applied to the GaAs-based detector.

E_{max}, keV

47

55.15

57.85

58.4

59.45

59.55

59.25

59.55

59.4

V, V

50

100

150

200

250

300

350

400

450

Fig. 3. Voltage dependences of the energy position (curve 1) of the prominent peak (59.5 keV) in the 241 Am isotope spectra, taken with the GaAs-based detector, energy resolution (curve 2) of this peak (a), and detection efficiency (number of counts) of the detector (b).

∧ D ∨ A F A B Semiconductor solutions

Chromium Compensated of GaAs Sensors Evaluated with TPX3

Erik Maddox, Erik Hogenbirk

Amsterdam Scientific Instruments

Spatial resolution Si vs GaAs vs CdTe

• TPX3 detectors, X-ray tube 50 kVp, W target, 1 mm plastic cover

<u>Si 300 um</u>

Sigma PSF = 0.9334

GaAs 500 um

Gaussian y a + b-ba⁺cop(-c)⁺(c-y)(2⁻d⁺(d)) b = 5.21461 c = 0.0021814 7²20 7²2 0.9537 0 -20 -5 0 5 CdTe 1 mm

Sigma PSF = 0.9769

Juha Kalliopuska | EUXFEL 2023 | High-Z GaAs Development by ADVAFAB

Semiconductor solutions

A D V A F A B

Chromium Compensated of GaAs Sensors Evaluated with MPX3

Jörn Lange

X-Spectrum

Comparison to commercial material Mo 17.5 keV

Juha Kalliopuska | EUXFEL 2023 | High-Z GaAs Development by ADVAFAB

Semiconductor solutions

Comparison to commercial material Mo 17.5 keV

Chromium Compensated of GaAs Sensors Evaluated with TPX2

Jan Jakubek

ADVACAM s.r.o

TPX2 with GaAs sensor 500 µm:

- manufactured by ADVAFAB
- Cr compensated

Expectations:

- Other High-Z sensors (CdTe, CZT) exhibit instability
- GaAs is more stable (less polarization)
- If combined with super stable TPX2
- ⇒ Super HDR Solution for imaging applications (plastics, biological ...)

Uniformity and spectral properties

Sn XRF (25 keV) flat field image

Result:

Threshold 4 keV was used

 \Rightarrow Good uniformity is achievable!

∧ D V A F A B Semiconductor solutions

Uniformity and spectral properties

Threshold scan of Sn XRF (25 keV): 5% FWHM energy resolution

Sn XRF spectrum Timepix2+GaAs: Threshold scan

Time over Threshold of Pb XRF (75 keV): 10% FWHM energy resolution Pb XRF spectra: ToT mode + cluster processing (no charge sharing)

Result:

- Threshold 4 keV was used
- \Rightarrow 5% TS FWHM @ 25 keV is achievable!
- \Rightarrow 10% ToT FWHM @ 75 keV is achievable!

Imaging tests & stability

One of the first images

At 7 kcnts/s/pixel

Result:

A D V A F A B

Semiconductor solutions

- Promising first results!
- \Rightarrow SNR of 2000 is achievable!
- \Rightarrow More devices to be tested

Stability versus intensity: 20x more?

Juha Kalliopuska | EUXFEL 2023 | High-Z GaAs Development by ADVAFAB

Semiconductor solutions

Contribution for benefit of EUXFEL and further work

- Close R&D relationship with academic and industrial partners that operate in synchrotron market
- Essential to have access and evaluations done in high flux environment using MHz detectors => feedback & limitations
- Process development iterations to meet the demanding requirements
- Production partnership for sensor manufacturing and hybridization

Further work

- Reduce leakage current for charge integrating readout electronics and spectroscopic diodes
- Thicker sensors $\sim 1 \text{ mm}$
- Larger wafer size 3" => 4"

∧ D ∨ A F A B Semiconductor solutions