NPOD background simulation studies update

Raquel Quishpe

January 30th, 2023

Karlsruher Institut für Technologie

Previous results

- Compared <u>previous results</u> with the G4 simulations available in NAF-LUXE
- Results agree with a factor 10 difference due to the number of MC files used in G4 simulations at KIT
- Previous results included an air insert. This was not present in the NPOD paper

Current simulation: general cuts applied

- No air filter
- geometry settings with the distance of 2.5 m between the beam dump and BSM detector
- pdg==22 ; pdg==2112
- detid==9000
- sqrt(x*x+y*y)<1000.0
- abs(z-17130.0)<0.1 (front side of the detector)

The following plots correspond to 1BX, dump material Tungsten and length 1m

- Plot produced using: (E>0)*weight
- After applying the cut sqrt(x*x+y*y)<1m low-E photons decreased in higher E-bins
- Lots of low-E photons in first bins persist

- Plot produced using: weight
- Ommitted cut sqrt(vtxx*vtxx+vtxy *vtxy)<300.0
- Concrete structure seen for photons

Conclusions

- Strong presence of low-E photons persists. This affects the energy distribution and z-vertex position, in particular for neutrons
- BSM calorimeter concrete structure seen for photons when ommiting cut in vtxx, vtxy
- Normalisation and low-E photons presence yet to be understood

Thanks!