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Number of publications matching “Graph Neural Networks”. 

From dimensions.ai
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Protein Fold Classification using 
Graph Neural Network and 
Protein Topology Graph

Modelling Social Context for Fake News 
Detection: A Graph Neural Network Based 
Approach

Beyond Voxel Prediction Uncertainty: 
Identifying brain lesions you can trust

Bending Graphs: Hierarchical Shape 
Matching using Gated Optimal Transport

https://www.biorxiv.org/content/10.1101/2022.08.10.503436v1.full.pdf
https://www.biorxiv.org/content/10.1101/2022.08.10.503436v1.full.pdf
https://www.biorxiv.org/content/10.1101/2022.08.10.503436v1.full.pdf
https://arxiv.org/pdf/2207.13500.pdf
https://arxiv.org/pdf/2207.13500.pdf
https://arxiv.org/pdf/2207.13500.pdf
https://arxiv.org/pdf/2209.10877.pdf
https://arxiv.org/pdf/2209.10877.pdf
https://arxiv.org/pdf/2202.01537.pdf
https://arxiv.org/pdf/2202.01537.pdf
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Overview of this talk

● Graphs
○ 7 Bridges of Königsberg
○ Modern Graph Theory

● Graph Neural Networks
○ Convolutions on Graphs
○ Exotic Learning Goals

● Examples of applications in Physics
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The 7 Bridges of Königsberg
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Historical math problem solved by 
Euler in 1736, widely regarded as the 
birth of graph theory.

Problem Statement:

Starting from anywhere you please, you 
must cross all bridges. However, you 
must only cross a bridge once!

The 7 Bridges of Königsberg

Map of Königsberg in 1800’s, borrowed from Optimised Analysis and Visualisation of 
Metabolic Data Using Graph Theoretical Approaches 

https://www.researchgate.net/publication/266354297_Optimised_Analysis_and_Visualisation_of_Metabolic_Data_Using_Graph_Theoretical_Approaches
https://www.researchgate.net/publication/266354297_Optimised_Analysis_and_Visualisation_of_Metabolic_Data_Using_Graph_Theoretical_Approaches
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Problem Statement:

Starting from anywhere you please, you 
must cross all bridges. However, you 
must only cross a bridge once!

At the time, this was considered to 
be a numerical problem, as no set of 
first principles existed

Map of Königsberg in 1800’s, borrowed from Optimised Analysis and Visualisation of 
Metabolic Data Using Graph Theoretical Approaches 

The 7 Bridges of Königsberg

https://www.researchgate.net/publication/266354297_Optimised_Analysis_and_Visualisation_of_Metabolic_Data_Using_Graph_Theoretical_Approaches
https://www.researchgate.net/publication/266354297_Optimised_Analysis_and_Visualisation_of_Metabolic_Data_Using_Graph_Theoretical_Approaches
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Original Drawing from Euler’s solution in 1736

Euler’s Perspective:
The problem is comprised of landmasses and connections between them. 
Perhaps principles can be deduced from such abstraction.

Euler’s solution as a modern-day graph

The 7 Bridges of Königsberg
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Original Drawing from Euler’s solution in 1736, 
with a graph representation on top

Euler’s Perspective:
The problem is comprised of landmasses and connections between them. 
Perhaps principles can be deduced from such abstraction.

The 7 Bridges of Königsberg
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Euler’s Theorem:

The problem has a solution if at most two land masses have an uneven number of 
bridges connected to it.

The theorem was proven by Carl Hierholzer in the 1870’s.

It means that there is no solution to the The 7 Bridges of Königsberg!

Euler’s solution as a modern-day graph

The 7 Bridges of Königsberg
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Why is that interesting?

Euler’s solution as a modern-day graph

Seemingly complex problems can become simple if represented as graphs. 

Euler was able to use quantities specific to graphs (the number of bridges 
connected to each landmass) to quickly assess if the problem is solvable and 
if so, where a potential path may start and end.

Today, there are many such known quantities and many different kinds of 
graphs….
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Graph Theory
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A graph is a collection of two things

Nodes (landmasses)
a.k.a. “Vertices”

Represents data (“node features”)

Edges (bridges)
a.k.a. “Connections”

Implies relationship between data
Can also represent data (“edge features”)

Euler’s graph is an undirected, homogeneous graph

Graph basics

Euler’s solution as a modern-day graph
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Graph Basics

A directed graph has an implied direction in it’s edges.

Directed edges can used to model the flow of 
information.  Simple example of 

a directed graph
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Graph Basics

John
 53
 UK

BMW

undirected edge
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Can be used to model complex data structures
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In addition to nodes and edges, graphs also have

Adjacency Matrix

Graph basics

Euler’s solution as a modern-day graph

Adjacency Matrix for the Euler graph
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In addition to nodes and edges, graphs also have

Adjacency Matrix

Degree Matrix (number of edges)

Graph basics

Euler’s solution as a modern-day graph

Adjacency Matrix for the Euler graph

Degree Matrix for the Euler graph
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In addition to nodes and edges, graphs also have

Graph basics

Euler’s solution as a modern-day graph

Graph Laplacian

Laplacian for the Euler graph

- =

A graph analogue to the Laplacian operator on continuous 
functions (divergence of gradients)

Used in various modified versions in some GNNs.
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In addition, one also has

Graph basics

Euler’s solution as a modern-day graph

Graph Laplacian

Laplacian for the Euler graph

- =

In fact, the interpretation of the Laplacian operator has lead to 
two competing fields in graph theory:

Spatial
Uses laplacian as-is; local connectivity is used

Spectral
Decomposes Laplacian into Fourier modes; the graph is often 
treated as one signal
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Images are graphs

21

An image is a special kind of graph

● Nodes represents pixels
● Edges are drawn to form a grid

By definition:  
The distance between neighbouring 
pixels in an image is constant.

When you represent your data as an image, 
you’re implying that the geometry of your data 
is grid-like. 

Illustration from exercise; shows graph representation of 
image.
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Images are graphs

22

The selling point for graphs is their flexibility 
as a data representation vehicle

Pro’s: 
● No artificial constraints 
● “Generalized image”
● Can represent (probably) any data
● Leads to many definitions of 

convolutions

Con’s
● Graph representation itself becomes a 

“hyperparameter”

Illustration from exercise; shows graph representation of 
image.
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Graph Neural Networks

23
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GNNs are neural networks that act on graph structured data. Most 
are convolutional graph networks (GCNs), where the abstractness of 
graphs leads to many different definitions of “convolution”. 

Generally, a convolution on a graph is a function

where 
X : [n,d]-dimensional node features
A : adjacency matrix
n : number of nodes
d : number of node feature dimensions
k : dimension of node feature embedding space 

and is equivariant to permutations of the node ordering. Extending 
the symmetries of GCNs is an active area of research

It is the definition of “convolution” that sets GNNs apart

Graph Neural Networks

Illustration of a GCN layer 
outputting an embedded graph

https://arxiv.org/pdf/2105.14058.pdf
https://arxiv.org/pdf/2105.14058.pdf
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Graph Neural Networks

Spatial GNNs
Uses local structure to infer, classify or 
feature extract. Uses message passing 
to update node features iteratively. Has a 
wide range of applications. 
By far the most common.

Spectral GNNs
Decomposes Laplacian into Fourier 
modes; the graph is often treated 
as one signal. All node features 
updated at once. Narrower range 
of applications.

The two different camps in Graph Theory leads to two competing methodologies for GNNs:

It’s an active area of research to map advances in one camp to the other, and some progress has 
been made *. 

* see this review from 2020.

https://arxiv.org/abs/2002.11867
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Learning tasks are generally 

graph-level
Maps graph to a single collection of targets

(Classical regression, classification)

node-level
predictions are produced for each node in the graph

(node classification & regression, link prediction*)

*depends on method

Graph Neural Networks

n  : number of nodes
d  : node feature dimensions 
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Spatial GCNs (Message passing)

Spatial GNNs capture local information

“Neighboring nodes” contribute to the convolution

Cannot gather information outside of a certain 
neighbourhood size

Edges determine the flow of messages

A learned function is applied 
to transform node feature 
pairs [target, source] into 
messages. Weights are 
shared.

Typical message-passing operation on a source node.
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Adds self-attention to message-passing, presented in Graph Attention Networks (2018)

An array of node features

Is passed through an attention mechanism

Which computes attention messages

That are converted to attention coefficients via

Graph Attention Networks (GATConv)

Illustration of multihead (n = 3) attention 
coefficients used in message passing. From 
Graph Attention Networks (2018)

(masked attention)

https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1710.10903.pdf
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Example: EdgeConv

A convolutional operator on graphs designed for segmentation analysis of 
3D point clouds. (Geometric learning)

Introduced in Dynamic Graph CNN for Learning on Point Clouds (2019)

Spatial GCNs (Message passing)

https://arxiv.org/pdf/1801.07829.pdf
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Goal: 
Cluster nodes together into neighbourhoods that are related - “segments”.

Method: 
Represent point clouds as graphs. 
Interpret the convolution as a spatial transform in the latent space, and 
re-compute the edges based on new, latent positions.

From  Dynamic Graph CNN for Learning on Point Clouds

EdgeConv

https://arxiv.org/pdf/1801.07829.pdf
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EdgeConv

EdgeConv ‘convolutes’ the graph by updating the values in each node 
in the graph by considering the values in the nodes that it is connected 
to.

The update of values of the j’th node is done via

        Where f is a learned function (a neural net)

[2,2]

[1,4]

[1,1]

[4,4]

Node 1

Node 2

Node 3

Node 4
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[2,2]

[1,4]

[1,1]

[4,4]

Node 1

Node 2

Node 3

Node 4

,                                for simplicity

EdgeConv
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,                                for simplicity
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[2,2,1,-2]
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,                                for simplicity
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[2,2,1,-2]

[2,8,-1,5]

[2,2,-3,-6]

[4,4,3,3]

Node 1

Node 2

Node 3

Node 4

,                                for simplicity

EdgeConv

New Edges

Latent graph

By interpreting the convolution as a 
translation, we can re-assign edges 
based on proximity in the latent space
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,                                for simplicity
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[2,8,-1,5]
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Node 1

Node 2
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Node 4

Edges determine the 
information flow; 
the GNN is now in control of 
which nodes contributes 
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EdgeConv

Figure from original paper

https://arxiv.org/pdf/1801.07829.pdf
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CNN Convolutions vs. EdgeConv

53

vs.

CNN Convolutions EdgeConv
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Examples of applications in Physics

54
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Learning Feynman Diagrams using Graph Neural Networks
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Borrowed from Learning Feynman Diagrams using Graph Neural Networks

Learning Feynman Diagrams using Graph Neural Networks

Nodes : interaction vertices
     Features - not clear

Edges : particles
             Features - particle data

Target : matrix elements 
averaged over helicity

Each training example is 
parameterized with (polar angle, 
momentum). Momentum is in the 
range [1, 1000] GeV.

https://arxiv.org/pdf/2211.15348.pdf
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Learning Feynman Diagrams using Graph Neural Networks

Borrowed from Learning Feynman Diagrams using Graph Neural Networks

“Virtual node” connected to all other 
nodes. Contains interaction strength 
of QCD, QED and weak force. 
Improved performance.

Momentum is concatenated to 
learned graph representation

L1 Loss

Graph-level task

https://arxiv.org/pdf/2211.15348.pdf
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Learning Feynman Diagrams using Graph Neural Networks

A strong proof-of-concept

Accurate up to first or second decimal point

Borrowed from Learning Feynman Diagrams using Graph Neural Networks

https://arxiv.org/pdf/2211.15348.pdf
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Node Classification for noise rejection in IceCube Neutrino Observatory
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Data from neutrino telescopes are geometric time 
series.

An event is a series of measurements of light in an 
interaction window by sensors placed in the ice. 
Each sensor often can measure light (so-called 
pulse) multiple times in the same interaction 
window.

1. For each sensor we associate a time series.
2. Each sensor has a unique position in the ice
3. The placement of sensors is irregular

Full Detector Active Sensors Graph

Node Classification in IceCube

Mock simulation of a neutrino telescope. Illustrates 
the associated graph
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“The goal of IceCube Upgrade is to provide 
world-leading sensitivity to neutrino oscillations and to 
take unique measurements of tau neutrino appearance 
with high precision. It also serves as a R&D platform for 
the future IceCube-Gen2 experiment.”  
Physics Potential of the IceCube Upgrade

IceCube Press Release

Around 700 new modules

Node Classification in IceCube

https://iopscience.iop.org/article/10.1088/1742-6596/1468/1/012169/meta
https://icecube.wisc.edu/news/press-releases/2019/07/nsf-mid-scale-award-sets-off-first-extension-of-icecube/
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On average, events have 70% noise, making them 
practically unreconstructable.

We phrased noise cleaning as a node classification problem, and 
used DynEdge to clean the events.

Node Classification in IceCube

DynEdge trained on uncleaned 
events with an expected poor 
performance.
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We removed the node-aggregation layers such that DynEdge outputs 
node-level predictions.

graphnet

Node Classification in IceCube

node-level predictions

From Graph Neural Networks for low-energy event classification & reconstruction in IceCube

https://github.com/icecube/graphnet
https://iopscience.iop.org/article/10.1088/1748-0221/17/11/P11003
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Node Classification in IceCube

On average, events after cleaning contains 6.8% noise and retains 91% signal
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Node Classification in IceCube

DynEdge trained on uncleaned 
events with an expected poor 
performance.

DynEdge trained on cleaned events
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Other applications in physics

Vast majority of use cases of GNNs in physics is collider experiments 
and astro-particle physics. They often phrase their tasks as geometric 
learning problems.

You can find a dated (but good) review here

https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a
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Thank you for listening!

icecube/graphnet 67

https://github.com/icecube/graphnet
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Exercises - GNN on MNIST

Showcases EdgeConv on graphs for image classification on the classic MNIST dataset.

Open this link to go to the exercises:

 Notebook (start as GPU session)
    

 Solution    (If you get stuck and I’m busy)

https://colab.research.google.com/drive/1Nu-UOm2O3CcrBXf69MXnN6l5hXIVfWZ1?usp=sharing
https://colab.research.google.com/drive/1-iqygOOAM9hWLjArSSN4HIdhAImFTMgf?usp=sharing

