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Overview of this talk

e Graphs
o 7 Bridges of Kdnigsberg
o  Modern Graph Theory

e Graph Neural Networks
o  Convolutions on Graphs
o  Exotic Learning Goals

e Examples of applications in Physics
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The 7 Bridges of Konigsberg
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The 7 Bridges of Konigsberg

Historical math problem solved by s\jmgg 2
Euler in 1736, widely regarded as the AAERHA X

birth of graph theory. W g@@

Problem Statement:

Starting from anywhere you please, you
must cross all bridges. However, you
must only cross a bridge once!
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The 7 Bridges of Konigsberg

Problem Statement:

Starting from anywhere you please, you Wg@@ g:ﬁ:’x'?:'l:.wf‘w B A
must cross all bridges. However, you 5@@@@ 4 'th% SR SR
must only cross a bridge oncel! = e 'ﬁ%-j{“ Sy

At the time, this was considered to
be a numerical problem, as no set of
first principles existed
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The 7 Bridges of Konigsberg

Euler’s Perspective:
The problem is comprised of landmasses and connections between them.
Perhaps principles can be deduced from such abstraction.
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The 7 Bridges of Konigsberg

Euler’s Perspective:

The problem is comprised of landmasses and connections between them.

Perhaps principles can be deduced from such abstraction.
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The 7 Bridges of Konigsberg

Euler’s Theorem:

The problem has a solution if at most two land masses have an uneven number of
bridges connected to it.

The theorem was proven by Carl Hierholzer in the 1870’s.

It means that there is no solution to the The 7 Bridges of Konigsberg!
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Why is that interesting?

Seemingly complex problems can become simple if represented as graphs.
Euler was able to use quantities specific to graphs (the number of bridges

connected to each landmass) to quickly assess if the problem is solvable and
if so, where a potential path may start and end.

Today, there are many such known quantities and many different kinds of
graphs....
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Graph Theory
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Graph basics

A graph is a collection of two things

Nodes (landmasses)

Represents data (“node features”)

Edges ( )

Implies relationship between data
Can also represent data (“edge features”)

Euler’s graph is an undirected, homogeneous graph
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Graph Basics

A directed graph has an implied direction in it’s edges.

Directed edges can used to model the flow of
information.
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Graph Basics

The Euler graph had a homogenous node type
(landmasses) and edge type (bridges).

Heterogeneous graphs contain different kinds of nodes
and edges

father
Can be used to model complex data structures

Example of a heterogeneous graph, with multiple
kinds of edges and nodes.
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Graph basics

In addition to nodes and , graphs also have
Adjacency Matrix A B C D
A0 1 1 1
1, if there is an edge between n; and n; B 10 01
Ajj = ) c 1 0 0 1
0, otherwise D1 1 1 OJ
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Graph basics

In addition to nodes and , graphs also have
Adjacency Matrix A B C D
A 0 1 1 1
1, if there is an edge between n; and n; B 10 01
Ajj = , c 1 0 0 1
0, otherwise [D 11 1 OJ
Degree Matrix (humber of edges)
A B C D
A 5 0 0 0
legr ), ifi=] B 0 3 00
D;j = degree(n:) I cC 00 3 0
0, otherwise [ DO O 0 3 J
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Graph basics

In addition to nodes and , graphs also have

Graph Laplacian

A B C D A B C D A B C D

A5 0 0 0 A0 1 1 1 A5 -1 -1 -1

— B03o0GO0l-|B100 1 =|B -1 3 0 -1
L:=D-A4 cC 00 30 c 10 0 1 c -1 0 3 -1
LD 00 0 2J LD 111 ()J [D -1 -1 -1 3J

A graph analogue to the Laplacian operator on continuous
functions (divergence of gradients)

Used in various modified versions in some GNNSs.
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Graph basics

In addition, one also has

Graph Laplacian

A B C D
A5 0 0 0 y
L=D—A B 0 3 F) 0f - ‘

A

B 1
cC 00 30 c o1
LD 00 0 :;J LD 1

-1 0 3 -1
-1 -1 -1 :;J

:»—»—»—U

A B C D

A 5 -1 -1 -1

= B -1 3 0 -1
C
D

In fact, the interpretation of the Laplacian operator has lead to
two competing fields in graph theory:

Spatial
Uses laplacian as-is; local connectivity is used

Spectral
Decomposes Laplacian into Fourier modes; the graph is often
treated as one signal
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Images are graphs

An image is a special kind of graph

e Nodes represents pixels
e Edges are drawn to form a grid

By definition:
The distance between neighbouring
pixels in an image is constant.

When you represent your data as an image,
you’re implying that the geometry of your data
is grid-like.
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Images are graphs

The selling point for graphs is their flexibility
as a data representation vehicle

Pro’s:
e No artificial constraints
e “Generalized image”
e Can represent (probably) any data
e | eads to many definitions of
convolutions

Con’s
e Graph representation itself becomes a
“hyperparameter”
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Graph Neural Networks
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Graph Neural Networks

GNNs are neural networks that act on graph structured data. Most
are convolutional graph networks (GCNs), where the abstractness of
graphs leads to many different definitions of “convolution”.

Generally, a convolution on a graph is a function

where f(X,A) : R™¥d 5 Rrxk

: [n,d]-dimensional node features

: adjacency matrix

: number of nodes

: number of node feature dimensions

: dimension of node feature embedding space

x a5 > X

and is equivariant to permutations of the node ordering. Extending
the symmetries of GCNs is an active area of research

It is the definition of “convolution” that sets GNNs apart
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Graph Neural Networks

The two different camps in Graph Theory leads to two competing methodologies for GNNs:

Spatial GNNs

Uses local structure to infer, classify or Decomposes Laplacian into Fourier
feature extract. Uses message passing modes; the graph is often treated
to update node features iteratively. Has a as one signal. All node features
wide range of applications. updated at once. Narrower range
By far the most common. of applications.

It’s an active area of research to map advances in one camp to the other, and some progress has
been made *.

* see this review from 2020.
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https://arxiv.org/abs/2002.11867

Graph Neural Networks
Learning tasks are generally
graph-level

GNN(g) : [n,d] — [1, k]

GNN(g) : [n,d] — [n, ]l
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Spatial GCNs (Message passing)

Spatial GNNs capture local information

“Neighboring nodes” contribute to the convolution

Cannot gather information outside of a certain @ Mij = fieamed(®i, @)
neighbourhood size @ z; = Aggr(mir, miz, . . Min)
Edges determine the flow of messages e

ma3a1

l\.j v

Target Node
&3 = Aggr(msi, msy)
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Graph Attention Networks (GATConv)

Adds self-attention to message-passing, presented in

An array of node features
h = {h,hs,...,hn}
Is passed through an attention mechanism hs
a: RF x RF' 5 R
Which computes attention messages
i = a(Wh;, Wi_{,)

That are converted to attention coefficients via

concat/avg /.,
~>{ h}

«jj = softmax;(e;;)
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Spatial GCNs (Message passing)

Example: EdgeConv

A convolutional operator on graphs designed for segmentation analysis of
3D point clouds. (Geometric learning)

Introduced in (2019)

Advanced Deep Learning Train-the-Trainer Workshop
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https://arxiv.org/pdf/1801.07829.pdf

EdgeConv

Goal:
Cluster nodes together into neighbourhoods that are related - “segments”.

Method:

Represent point clouds as graphs.

Interpret the convolution as a spatial transform in the latent space, and
re-compute the edges based on new, latent positions.

near

From

Advanced Deep Learning Train-the-Trainer Workshop
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EdgeConv

EdgeConv ‘convolutes’ the graph by updating the values in each node

in the graph by considering the values in the nodes that it is connected
to. Node 2

(1,4]
The update of values of the j’'th node is done via

Nneighbours
T; = E f Liy T — )

Where fis a Iearned function (a neural net) Node 3

Node 1 Node 4
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EdgeConv

Tneighbours

T = Z flzi, zi —z;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2

(1,4]

Node 3

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2

(1,4]

Node 3

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2

(1,4]

I = f(ﬁUl, L1 — :r:2)2 = 0

Node 3

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2

(1,4]

21| =| f(z1, 21 — :1:2)2 = f([2,2], [2,2] - [1’4])2 = [2,2,1,-2] 0
Node 3

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2

(1,4]

[2a2a 17 _2] °

Node 3

N

1

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2

(1,4]

[2a2a 17 _2] °

Node 3

1

X
no
[l

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity

k=1 Node 2
[1,4]
T = [2a2a17_2] 0
Lo = f(%‘z, Lo — 371)1 + Node 3
Node 1 Node 4
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EdgeConv

Tineighbours

k=1

7 = [2,2,1,-2]

- ;)

, f(z) = 1-z + 0 for simplicity

T2 = f(z2, 22 — 71)4

+

f(za, ®a — x3),
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity

k=1 Node 2
[1,4]

T = [2,2,1,—2] 0
ZTo = f(l’z, 2 — 1‘1)1 -+ f(w% L2 — 333)3 Node 3

= f([1?4]7 [174] - [2’2])1 + f([174]7 [1,4] - [171])3

= [1,4,—1,2] + [1,4,0,3] @

= [2,8,—1,5]

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1

Node 2
[1,4]
T = [2,2, 1, —2] 0
T =[2,8,—1,5] Node 3
o @
Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2

(1,4]

# = [2,2,1,-2] 0

T =[2,8,—1,5] Node 3

Z3| = fxs, T3 — x2)y + @ @

Node 1 Node 4
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EdgeConv

r; =

7 = [2,2,1,-2]

T2

Z3

Tineighbours

k=1

- [2, 8, _1, 5]

= f(x?n I3

f(mh L

- ;)

, f(z) = 1-z + 0 for simplicity

— 2132)‘) +

f(m?n T3

— 134)4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity

k=1 Node 2
[1,4]
T = [2,2,1,—2] 0
T =[2,8,—1,5] Node 3
T3| = f(x3, z3 — ®2)y H f(x3, T3 — T4), @
- f([]-’l]’ [171] - [1a4])2 + f([171]7 [171] - [4’4])3
- [1a1707 _3] + [17 1,-3, _3] Node 4
_ [2,2,—3,—6] Node 1
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1

Node 2
[1,4]
T = [2,2,1,—2] °
T =[2,8,—1,5] Node 3
533 = [2, 2a _37 _6] @ @
Tyl =
Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity

k=1 Node 2
(1,4]
z = [2,2,1,-2] 0
T =[2,8,—1,5] Node 3

%3 =[2,2,—3, 6] @ @

f(x4, T4 — x3)4
Node 4

N
1SN
I

Node 1
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity

k=1 Node 2
[1,4]
T = [2,2, 1, —2] 0
T =[2,8,—1,5] Node 3
%3 =[2,2,—3, 6] @
Zy4| = f(ZU4, Ly — :133)3 - f([47 4]7 [4a 4] - [171])2 - [4’ 4,3’3]
Node 1 Node 4

Advanced Deep Learning Train-the-Trainer Workshop 47



EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1 Node 2
[1.4]
7 = [2,2,1,-2] 0
T =[2,8,—1,5] Node 3
T3 = [2a 2,-3, _6] @
Zy = [4,4,3,3]
Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity

k=1
Node 2
Node 2
[2,8,-1,5]
[1,4]
EdgeConv
.
Node 3
Node 3
Node 4
Node 1
Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1

Node 2

[2,8,-1,5]

New Edges

o
Node 3

Node 1 Node 4
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EdgeConv

Tineighbours

T = Z flzi, zi —x;) , f(x) = 1-2 + 0 for simplicity
k=1

Node 2 Node 2
[2,8,-1,5] [2,8,-1,5]
New Edges
P
Node 3 Node 3
Node 1 Node 4 Node 1 Node 4
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EdgeConv

— EdgeConv _.

point cloud
layer 1
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layer 2

—

EdgeConv

layer 3

—

feature concat.
&

multi-layer perceptron

segmentation

output
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CNN Convolutions vs. EdgeConv

AV
AV
AN
AN
AN

6,6 — 4),

(

A

(6,6 — 0), + £(6,6 — 0)y + f
(6,6] + [6,2]

+
+ [6,6] +
[12,8]

6,3]
[12,9] +
24,17]

#5 = (6,6 — 3),

EdgeConv

6\ Q\ ©

/520?%

VS.

A A
AN
AV A AN
AN
AN
VA VA VA
\AR A\ \ A\
W/ AN

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Destination pixel

/

Convolution filter

CNN Convolutions
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Examples of applications in Physics
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Learning Feynman Diagrams using Graph Neural Networks
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Learning Feynman Diagrams using Graph Neural Networks

. . : +
Nodes : interaction vertices €
Features - not clear
~
Edges : particles
Features - particle data
o

: matrix elements

averaged over helicity Figure 4: Encoding a Feynman diagram as a graph. The blue vectors are the node features and the
red are the edge features.

Learning Feynman Diagrams using Graph Neural Networks

Each training example is
parameterized with (polar angle,
momentum). Momentum is in the
range [1, 1000] GeV.
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https://arxiv.org/pdf/2211.15348.pdf

Learning Feynman Diagrams using Graph Neural Networks

Pooling

v

2N o | M, | —sLoss

(b) Top left image depicts the action of the GAT layer.
Top right is a portrayal of the output of the GAT layers
being pooled into a graph representation and momenta
added. This is passed to an FCN to get the predictions.

Learning Feynman Diagrams using Graph Neural Networks
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Learning Feynman Diagrams using Graph Neural Networks

A strong proof-of-concept

Accurate up to first or second decimal point

Matrix Element

0.016
0.014
S Test metric Data
o Test accuracy (1d.p.)  99.00%
. . Test accuracy (2d.p.) 81.50%
ol | A Test accuracy (3d.p.) 11.50%
0.008 i Test L1 Loss 0.0049
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Theta /rad

Learning Feynman Diagrams using Graph Neural Networks
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Node Classification for noise rejection in IceCube Neutrino Observatory

. ) , o
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> ° %3
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. 0 500 1000 1500 2000 2500 3000
_ top view nanoseconds —125m_
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Node Classification in IceCube

Data from neutrino telescopes are geometric time
series.

An event is a series of measurements of light in an

interaction window by sensors placed in the ice.
Each sensor often can measure light (so-called
pulse) multiple times in the same interaction |
window. i

Y,

R

1. For each sensor we associate a time series.

2. Each sensor has a unique position in the ice
3. The placement of sensors is irregular
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Node Classification in IceCube

“The goal of IceCube Upgrade is to provide

world-leading sensitivity to neutrino oscillations and to 1600 m é
take unique measurements of tau neutrino appearance :

with high precision. It also serves as a R&D platform for
2

the future IceCube-Gen2 experiment.” o

Physics Potential of the IceCube Upgrade
IceCube Press Release

2425m

e (S

2600 m
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https://iopscience.iop.org/article/10.1088/1742-6596/1468/1/012169/meta
https://icecube.wisc.edu/news/press-releases/2019/07/nsf-mid-scale-award-sets-off-first-extension-of-icecube/

Node Classification in IceCube

On average, events have 70% noise, making them

W
(<]

practically unreconstructable. 4000
2.5 3500
§ - - 3000
o
3 - 2500
g
o 1S L 2000
S
& % - 1500
N
1000
0.5
500
0.0 0
0.0 0.5 1.0 1.5 2.0 2:5 3.0
Zenithre
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Node Classification

Input Graph

C@ [n,6]

State Graph 1

[n, 256]
EdgeConv

State Graph 2

EdgeConv n..256]

State Graph 3

EdgeConv % jn;25¢]

State Graph 4

EdgeConv

[n, 256]
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in IceCube

[n, 1030] MLP [n, 256] Prediction

[n,n_outputs]

EdgeConv

for j in range(num_nodes):

k
_In,h] (k-nny, z; = Zmlp(a:j,mj — ) [n.256] |
i

graphnetO



https://github.com/icecube/graphnet
https://iopscience.iop.org/article/10.1088/1748-0221/17/11/P11003

Node Classification in IceCube

o rejected noise e selected noise
e selected physics rejected physics

- |ceCube - DeepCore Upgrade
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Node Classification in

Zenith Regression Upgrade

3.0
4000
25 3500
< 3000
% 2.0
5 2500
E
o 15 2000
=
<
S 1500
N
1000
05
500
0.0 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zenithrpe
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IceCube

Reco. Zenith [rad.]

0.0

0.5

1.0
True Z

15 2.0
enith [rad.]

2.5

3.0
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Other applications in physics

Vast majority of use cases of GNNs in physics is collider experiments

and astro-particle physics. They often phrase their tasks as geometric
learning problems.

You can find a dated (but good) review here

Advanced Deep Learning Train-the-Trainer Workshop
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https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a

Thank you for listening!

®_0
o
GraphNeT
°Q? % Graph Neural Networks for
Neutrino Telescope Event Reconstruction

() icecube/graphnet &7


https://github.com/icecube/graphnet

Exercises - GNN on MNIST

Showcases EdgeConv on graphs for image classification on the classic MNIST dataset.

Image as graph

Input Image

Open this link to go to the exercises:

Notebook (start as GPU session)

Solution  (If you get stuck and I’'m busy)

Truth =7

Advanced Deep Learning Train-the-Trainer Workshop
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https://colab.research.google.com/drive/1Nu-UOm2O3CcrBXf69MXnN6l5hXIVfWZ1?usp=sharing
https://colab.research.google.com/drive/1-iqygOOAM9hWLjArSSN4HIdhAImFTMgf?usp=sharing

