QUBO scaling (Update to 19.1.2023

A deeper look into:

- 1) Time to solve of single sub-QUBOs
- 2) Time to reach 95% of the ground state energy
- 3) Success of solving a sub-QUBO

with respect to the sub-QUBO size

David Spataro Hamburg, 26.01.2023

xi=5, 10BX

Average time to get to 95% of the ground state energy.

For sub-QUBO size 5, 7 and 10 this is achieved after 2 +/- 0 iterations.

For sub-QUBO size of 12 it is 3 + - 0 iterations.

xi=5, 10BX, sub-QUBO size = 12

Average time for solving a sub-QUBO in dependency of the BX.

Explanation on what's actually happening on the following slides.

xi=5, 3 BX, sub-QUBO size = 12

Solving time of the sub-QUBO dependant on the sub-QUBo number.

Each color represents a BX., each dot represents a sub-QUBO.

~12 impact list shown for each BX.

xi=5, 3 BX, sub-QUBO size =12

Distribution of the sub-QUBO solving time for three BX

Each color represents a BX.

In total ~12 impact list iterations are shown which corresponds to ~50k sub-QUBOs

Results for different BX differ because they're run on different types of hardware on the cluster. Could not figure out how to run everything on the same hardware yet.

 \rightarrow Running everything again on a laptop at the moment

xi=5, 10BX for each sub-QUBO size

Average solving success for a sub-QUBO vs. sub-QUBO size.

NFT parameters derived from IBM calculation to have 99% sub-QUBO solving success rate.

Success rate decreases with sub-QUBO size. Worse than linear dependency.

Hamiltonian

xi=5, results for one Representative BX

- sub-QUBO size = 12
- data divided into 3709 sub-QUBOs
 - 3280 subQUBO matrices have no b_ij entries which means that triplets in these sub-QUBOs do not share any hit / have no connections/conflicts
 - 46 sub-QUBO matrices (~1.2%) have at least one b_ij entry \neq 0
- hypothesis: sub-QUBO scaling in terms of efficiency / fake rate correlated to
 - the number of sub-QUBO matrices which have a b_ij entry ≠ 0
 - the average number of b_ij entry ≠ 0 per matrix

Additional conclusion: Investigation of different ansatz types would not improve the results. Additional entanglements would act as perturbance in the optimisation process. BUT: For a replacement of the impact list, this is a good idea!

Conclusion

The time until the solution reaches 95% depends highly on the hardware the QUBO is run. At least a factor of 2 is in the game.

The sub-QUBO solving efficiency drops with the size of the sub-QUBO. For a size of 16, the 95% level was not reached, so this data could not be shown.

Currently I am reprocessing data on a single laptop, so the machine is always the same. Expecting results for all 10BX in ~ week.