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I will discuss a new type of constraints on defect CFTs,  

coming from (local) deformations of the defect

I will discuss some powerful applications for integrable theories such as 
N=4 SYM, and a general derivation based on conformal pert. theory, 
which uses no susy, and no integrability except to fix constants. 

Open question: can this be useful elsewhere (for non-integrable 
theories)?



Plan of the talk

➤ Motivation: new type of constraints for “Bootstrability”

➤ Connecting the line CFT and the cusp, and simpler 
examples of the method

➤ Conformal perturbation theory derivation

➤ Outlook on future applications

[cf. recent talk by Julius Julius in DESY!]



Conformal bootstrap can “solve” CFTs, provided we can isolate them

Motivation: bootstrability

[El-Showk,Paulos,Poland,Rychkov, 
Simmons-Duffin,Vichi ’12,’14]

Nontrivial challenge for conformal gauge theories such as AdS/CFT models 

(except in specific limits, e.g. strong ’t Hooft coupling)

In presence of integrability (and/or localization), we can provide further data 
to help isolate the theory!



Integrability

Bootstrability 1.0:  
Quantum Spectral Curve  + Numerical Conformal Bootstrap

Aside: note that integrability should know much more than the spectrum (ask Till)! -  

but that is a story for another day.

OPE + crossing symmetry



Setup: line defect CFT

Simpler 1D CFT setup

Interesting eventually to study bulk-defect bootstrap

Advantages: planar theory is consistent CFT on its own. Very nice results 
possible even with bootstrap alone 

[AC, Gromov, Julius, Preti ’21, ‘22] 

[..+N.Sokolova, in progress]


bulk program also possible! [Caron-Huot, Coronado, Trinh, Zahraee ’22]

[Liendo, Meneghelli, Mitev ’18]
[Meneghelli, Ferrero ’21]



One can get very narrow bounds for OPE coefficients

Today: discuss a method which shrinks the bounds by 3-4  

orders of magnitude, by using more information from integrability



A second type of constraints: spectrum of neighbouring theories

Similar to the way integrated correlators were obtained from localization
[Binder, Chester, Pufu, Wang ‘19] 

partition f. of theory 
with  deformed action 𝒩 = 2

integrated 4-pt  
in =4 SYM𝒩

But we also know many solvable deformations from integrability!

e.g. we know full non-BPS spectrum on full conformal manifold 

(  - deformations)⃗γ

Today we look at special deformations of 1D defect theory, 

and use the integrability of cusps on the defect in N=4 SYM

While the localization constraints come finite, we need careful regularisation - 

calculation illustrates conformal perturbation theory at NLO.

m = τ = τ̄ = 0



Connecting line and cusp



Tr [Pe ∫t1
−∞ dt(iAt + Φ||) O1(t1) Pe ∫t2

t1
dt(iAt + Φ||) O2(t2)…On(tn) Pe ∫+∞

tn
dt(iAt + Φ||)]⟨⟨O1(t1)O2(t2)…On(tn)⟩⟩ ≡

1/2 BPS Susy Wilson line in N=4 SYM:

Spacetime

Global

1D CFT correlators

SO(5,1)
4D conformal

→ SL(2)
⏟

1D conformal

× SO(3)

SO(6)
rotate Φi

→ SO(5)
rotate Φi

⊥

Symmetry breaking:

one of six scalar fields of N=4 SYM

⃗n ⋅ ⃗Φ ≡ Φ|| ≡ Φ6 {Φi}5
i=1

≡ {Φi
⊥}5

i=1
parallel orthogonal



Defect CFT has distinguished operators with protected dimensions

3 displacement operators 
Δ = 2

∂μJμ
⊥,i = δ(3)(x⊥) 𝕋i(x||) 5 tilt operators 1Δ =

broken translations

broken R-symmetry rotations

(actually part of the same 1/2-BPS multiplet) [Liendo, Meneghelli, Mitev ’18]

Φ||

Φi
⊥ Jμ

⊥,i

➤ one relevant operator (  ) 

➤ 5 marginal operators (  ,  ) 

➤ Infinitely many (generally non-BPS) irrelevant ops with 

Δ = 0

Φi
⊥ Δ = 1

Δ > 1

Spectrum from RG point of view:



The simplest 4-point function: four tilt operators [Liendo, Meneghelli, Mitev ’18]

⟨⟨ΦM
⊥ (t1) ΦN

⊥(t2) ΦP
⊥(t3) ΦQ

⊥(t4)⟩⟩

(N⊥)2t−2
12 t−2

34
=

Normalisation is physical.

We will review how it can be fixed shortly.

Cross ratio

known differential operators

all polarisations written in terms of single function f(x)

[δMNδPQ𝒟1 + δMPδNQ𝒟2 + δMQδNP𝒟3] ∘ f(x)

x =
t12t34

t14t23



Operator product expansion

f(χ) = fI(χ) + C2
BPS(λ) fℬ2

(χ)+∑Δ C2
Δ fΔ(χ)

Conformal blocks and  are known CBPS(λ)

[Liendo, Meneghelli, Mitev ’18]

Protected operatorIdentity Non-protected infinite 
spectrum of neutral 

operators

Spectrum is computable from integrability

(QSC)

[Grabner, Gromov, Julius ’20]

[Gromov, Julius, Sokolova to appear, all sectors]


[AC, Gromov, Julius, Preti ‘21]

 :  leading non-protected 
irrelevant operator, 

Φ||

Δ||(λ) > 1



The cusp anomalous dimension 

➤ Scaling dim. of non-local operators in 4D theory

[Drukker ’12] [Correa, Maldacena, Sever ’12]

➤ Can insert operators at the cusps

➤ Gives smooth deformation of spectrum of 1D CFT 
obtainable from integrability! 

[Gromov, Levkovich-Maslyuk ’16]



The vacuum cusp at small angles

Bremsstrahlung function “Curvature” function

Complicated integral expression (details omitted)

 but known

To  at , two key functions of the coupling appearO(θ4) ϕ = 0

[Gromov, Levkovich-Maslyuk ’16]

Known analytically also for general ,    ϕ ≠ 0 θ ∼ ϕ



We found two integrated 4-point identities involving those 
constants

𝔽 = 1 + C2
BPS(λ)

δf(x) = f(x) − 2x + x
1 − x

Note: two independent identities, with different origin [Drukker Kong, Sakkas ’22]

[AC, Gromov, Julius, Preti ’22]



➤ Connecting  and BremsstrahlungN⊥

➤ Deriving  from integrabilityCBPS(λ)

To introduce the main idea of the method, let us look at two 
simple examples (postponing subtleties)

[Correa, Maldacena, Sever ’12]

[AC, Gromov, Julius, Preti ’22]



Warm up: fixing the tilt normalisation

t=0 t=T

⟨ W−ϵ
−T(0) W+T

+ϵ (θ) ⟩

Wt2
t1 (θ) = Pexp ( ∫ t2

t1
ds[A0 + Φ||cos θ+Φ1

⊥sin θ])

Expand the Wilson line operator in  …θ

∼ θ P [ ∫ t2
t1

ds′ Φ1
⊥(s′ ) e ∫t2

t1
ds[A0+Φ||]]

+θ2 P [( ∫
t1<s1<s2<t2

ds1ds2 Φ1
⊥(s1)Φ1

⊥(s2) − 1
2 ∫ t2

t1
ds′ Φ||(s′ )) e ∫t2

t1
ds[A0+Φ||]]

+…



[Correa, Maldacena, Sever ’12]

UV divergence should match

Well known relation between Bremsstrahlung and tilt normalisation

N⊥(λ) = 2𝔹(λ)

t=0 t=T
2pt

∫
0<s1<s2<T

ds1ds2
N⊥

s2
12

≃ N⊥ log ϵ
T

Φ1
⊥ Φ1

⊥

Study at O(θ2)



 from integrability: add orthogonal chargeCBPS(λ)

Φ2
⊥ Φ2

⊥

t1 t2

Cusp dimension in charged sector - also known!

⟨𝒲θ(t1, t2)⟩ ∝ ( ϵ
t12 )

2(Γ1(λ,θ)−2)
× t−2

12

⟨𝒲θ(t1, t2)⟩ ∼ ⟨𝒲θ=0(t1, t2)⟩ × (1 + 2 sin2 θ 𝔹1
log ϵ

t12

t2
12

+ …)
[Gromov, Levkovich-Maslyuk ’16]
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Φ1
⊥ Φ1

⊥

s1 s2

t1 t2

Study at O(θ2)

(

+
Φ2

⊥ Φ2
⊥

t1 t2 )
3 pt

Φ||

No log-divergence - 

can discard 3 pt



In this case, log-divergence of 4-point integral gives a 

solvable cross-ratio integral

reduce to explicit contribution from .C2
BPSBoundary terms at ,  x = 0 x = 1

C2
BPS(λ) = 1 + 2𝔹1(λ)/N⊥(λ) = 1 + 𝔹1(λ)/𝔹(λ)

∼ N2
⊥ [−1 + ∫ 1

0
∂x ( δf(x)

x ) dx]

Matching with cusp expansion :𝔹1(λ)

Agreeing with localization calculation! [Liendo, Meneghelli, Mitev ’18]



Can we just keep going…?

At such higher orders we need to be careful..!

e.g. -divergences hidden by  ones, so they become scheme-dependent…


We need a better formalism to do it properly

log log2

4 pt

Φ1
⊥ Φ1

⊥

t1 t2
ℂ ~ cusp at  O(θ4)

~
Φ1

⊥ Φ1
⊥

3 pt

Φ1
⊥ Φ||

t1 t2

Φ1
⊥

+

 (+ cycl.) + 2 pt + 1 pt … ?



Integrated 4-point functions 
from conformal perturbation theory



Abstract conformal perturbation theory

-rotation of the defect in R-spaceθ
 motion on the conformal manifold of 1D CFT≃

We want to expand the action of CFT(  ) in terms of local ops in CFT(  )θ 0

Higher orders: can contain in principle all ops

∫ dt δL(t)

Leading order: tilt operator - the only marginal ops in the theory

[Zamolodchikov ’87] [Kutasov ’89] [Cardy ’96]….+…



How do we use it? Like standard perturbation theory, 

but around interacting CFT

➤ Expand observables around CFT(0)

➤ Choose a regularisation scheme. In our case:

➤ Coefficients in the action need to be fixed by physics!

Point-split all integrals with same  cutoff, which also appears in the actionϵ

First do the integrals - then send .  
Irrelevant operators - which naively have “vanishing prefactor” - will contribute!

ϵ → 0



One combination of the constraints has a nice geometric proof

[Drukker, Kong, Sakkas ’22]

➤ Conformal manifold has natural Zamolodchikov metric

➤ For a defect breaking global currents we can identify geometry

ℳ = Goriginal /Gunbroken = SO(6)/SO(5) ≃ S5

➤ Integrated 4-tilts give the Riemann tensor, which we now know!

5-sphere of radius  N⊥

Linear combination of Constraint 1 and Constraint 2  
where  is cancelled. ℂ

𝒜CFT( ⃗θ ) = 𝒜CFT( ⃗0 ) + ∑5
i=1 θi ∫ dt Oi

⊥(t) + O( |θ |2 )

   gij ∝ ⟨Φi
⊥(0)Φ j

⊥(1)⟩ = δij N⊥

[Drukker, Kong, Sakkas ’22]

[Kutasov ’12]



To deduce the second constraint (with ) we go back to cuspsℂ

∝ t−2Γcusp(θ)
12⟨ ⟩

Easy to remove unphysical normalisation:

t1 t2

t2
12 ∂t1∂t2 log⟨…⟩ = − 2Γcusp(θ)

But for our derivation we need the action at NLO … O(θ2)

/ Interfaces between two CFTs on the manifold

 - cutoffsϵ



The expansion of the WL in N=4 SYM would suggest sth very simple:

How can we fix them? 

δACFT = s ∫ dt O1
⊥(t) + s2 ∑Δn

ϵΔn−1 bn,2 ∫ dt OΔn
(t) + O(s4)

All operators!

s ∫ dt Φ1
⊥(t) − s2

2 ∫ dt Φ||(t) + O(s4)

… but to avoid dangerous scheme dependence we will be totally agnostic:

couplings (a.k.a. Wilson coefficients)

∫ dt [s Φ||(t) + 1 − s2 Φ1
⊥(t)] ∼



➤ We are on the conformal manifold.  

All couplings should have vanishing beta functions.

➤ The -rotation remains a symmetry on the space of theories.  

➤ When done on the whole line,  
➤ it should actually do nothing to 1D CFT observables!

θ

This should fix them up to reparametrisations of the manifold

Very powerful - it is what we will actually use



Φ2
⊥

Φ2
⊥ Φ2

⊥ Φ2
⊥

Tilt operator in direction orthogonal to both  andΦ|| Φ1
⊥

( thus, the operator itself needs no redefinition with  ! ) θ

Key constraint in our derivation:



Φ1
⊥ Φ1

⊥

Φ2
⊥ Φ2

⊥

+0 = ∑Δn
CΦ⊥Φ⊥On

bn,2

Φ2
⊥ Φ2

⊥

4 pt

Integrate 
everywhere

3 pt

OΔn

We get a sum rule constraining Wilson coefficients!

Integrate 
everywhere



The “cusp” calculation gives

t1 t2⟨
⟩

t2
12 ∂t1∂t2 log

Φ1
⊥

Φ1
⊥ Φ1

⊥ Φ1
⊥

4 pt
+

+…

t1 t2

∑Δn
CΦ⊥Φ⊥On

bn,2 3 pt

OΔn

∼ ℂ

A second sum rule!

Φ1
⊥ Φ1

⊥



We just eliminate the Wilson coefficients from the two relations, 
which finally gives the constraint on the integrated 4-point function

Cusp



Comments and outlook



A new method to extract information for bootstrability, 

orthogonal to localization. It should also work far from BPS

This was very effective in the context of the single-correlator bootstrap,

numerically as well as analytically at weak coupling

No integrated correlators Constraint 1

Constraint 1+2



In principle we have access to a lot of information:

Integrated n-point functions … (cf. multi-point bootstrap  )[Barrat, Liendo, Peveri ’22]

Integrated non-BPS 4-pt functions…

Integrated local correlators from the  - deformation…γ

Interesting to see how far can we shrink the bounds… 

is there any hope of convergence?

Together with bootstrap in multi-correlator channels,

[AC,Gromov,Julius,Preti Sokolova, to appear] 


integrated correlators seem avenue for dramatic improvement… 



Conformal perturbation theory:  we only obtained sum rules for  - 

can we actually fix all coefficients? 


Does this give any further constraints?  or at least allow to compute 
interesting observables? (e.g. multi-cusp configurations…)

bn,2

Further questions

Any use for the method in non susy defect context..?  

Formally everything should work for defects breaking global symmetries - 
except  and  are unknown. 


This is a way to fix them - however  also has further interpretation as bulk-
defect CFT data so one of the two identities - at least - could be constraining.

Is there more that one can do?

𝔹 ℂ

𝔹

[Gimenez-Grau, Lauria, Liendo, van Vliet ’22]



Thank you for listening


