Theory Overview / EFT for $\mu \leftrightarrow e$

Sacha Davidson IN2P3/CNRS, France

Not an overview (hard to make interesting)

1: random comments about LFV +what we know

interesting theory results

2: EFT for $\mu \leftrightarrow e$

light LFV NP: Redigolo

if $\mu \leftrightarrow e$ is there, will we see it? if we see it, what can we learn?

Sorry to everyone I forgot to cite!

Reasons to like LFV

- leptons do not have strong interactions
- leptons can generate the baryon asym. (non-perturbative SM B≠₺) without proton decay
- $[m_{\nu}]$ says there is NP in lepton sector, that must give LFV.

so LFV exists —yippee!—but we don't see it yet...

What we know: categories of LFV constraints

$$\Delta LF = 1, \Delta QF = 0$$

 $\mu A \rightarrow eA, \ \tau \rightarrow 3l, \ h \rightarrow \tau^{\pm} l^{\mp}... \ (l \in \{e, \mu\})$

$$\Delta LF = 2$$

$$\mu \bar{e} \to e \bar{\mu}, \ \tau \to e e \bar{\mu}...$$

$$\Delta LF = \Delta QF = 1$$

$$K \to \mu \bar{e}$$

loops pprox not mix categories below $\Lambda_{
m LFV}$

$$\Delta LF = \Delta QF = 1$$
 ... leptoquarks?

$$\Delta LF = 2$$
: muonium oscillations

Swallow-NA62, Zuo- μ -ion collider Frau-LHCb, Fulghesu-LHCb

Uesaka (th), Zhao (expt)

what we know about LFV: bounds/upcoming reach

$$\Delta LF=1, \Delta QF=0 \quad (\Delta LF=\Delta QF=1)$$
 , $(\Delta LF=2)$

some processes	current constraints on BR	future sensitivities
$\mu \rightarrow e \gamma$	$< 4.2 \times 10^{-13}$	$6 \times 10^{-14} \; (\mathrm{MEG}) \rightarrow$
$\mu \rightarrow e\bar{e}e$	$<1.0 imes10^{-12}$ (SINDRUM)	10^{-16} (202x, Mu3e)
$\mu Ti \rightarrow eTi$	$<6 imes10^{-13}$, (SINDRUMII)	$10^{-(16 ightarrow ?)}$ (Mu2e,COMET)
$\mu Au \to eAu$	$<7 imes10^{-13}$, (SINDRUMII)	$10^{-(18 ightarrow ?)}$ (PRISM/PRIME/ENIGMA)
$(\mu \rightarrow e \gamma \gamma$	$<7.2 imes10^{-11})$ (CrystalBox)	
$ au ightarrow \{e, \mu\} \gamma$	$< 3.3, 4.4 \times 10^{-8}$	${\sf few} imes 10^{-9}$ (Belle-II)
$ au o e \bar e e, \mu \bar \mu \mu, e \bar \mu \mu \dots$	$< 1.5 - 2.7 \times 10^{-8}$	${\sf few} imes 10^{-9}$ (Belle-II, LHCb?)
$ au ightarrow \left\{ egin{aligned} e \\ \mu \end{aligned} \right\} \left\{ \pi, \rho, \phi, \ldots \right\}$	$\lesssim \text{few} \times 10^{-8}$	$few \times 10^{-9}$ (Belle-II)
$h o au^{\pm} \ell^{\mp}$	$<1.5, 2.2 imes 10^{-3}$ (ATLAS/CMS)	$<2 imes10^{-4}$ (ILC)
$h o \mu^{\pm} e^{\mp}$	$<6.1 imes10^{-5}$ (ATLAS/CMS)	2×10^{-5} (ILC)
$Z \to e^{\pm} \mu^{\mp}$	$<7.5 imes10^{-7}$ (ATLAS)	
$Z o l^\pm au^\mp$	$< \dots \times 10^{-7}$ (ATLAS)	
$K^+ \to \pi^+ \bar{\mu} e$	$< 4.7 \times 10^{-12} $ (E865)	10^{-12} (NA62)
muonium	$P_{M\bar{M}} < 8.2 \times 10^{-11} \text{ (PSI)}$	2×10^{-14} (MACE)

Parametrising LFV data: the many defins of Λ

- 1. draw tree diagrams for a process
- 2. parametrise blob as Lorentz+gauge invariant operator (of dim n)
- 3. write coupling constant C_I/Λ^{n-4} for operator \mathcal{O}_I
- 4. add to Lagrangian

data constrains
$$C_I/\Lambda^{n-4}$$
; can bound:
$$\begin{cases} \Lambda & \text{for } C_I = 4\pi \\ \Lambda & \text{for } C_I = 1 \\ \Lambda & \text{for } \sum_I C_I^2 = 1 \\ C & \text{for } \Lambda = v \\ C & \text{for } \Lambda = \text{TeV} \end{cases}$$

(then there are 2s for +h.c, flavour sums, ...)

$$\delta \mathcal{L}_{LFV} = 2\sqrt{2}G_F \sum_I C_I \mathcal{O}_I + \frac{1}{v^3} \sum_J C_J \mathcal{O}_J + \dots + h.c. \quad , \quad 2\sqrt{2}G_F \equiv \frac{1}{v^2}$$

But what about the dipole?

the dipole operator allows on-shell fermion to emit on-shell γ : $\mu \to e\gamma$, edms, g-2

$$\delta \mathcal{L}_{\mu \to e \gamma} = \frac{M}{\Lambda_{\text{LFV}}^2} \left(C_{D,L} \overline{e_R} \sigma^{\alpha \beta} \mu_L + C_{D,R} \overline{e_L} \sigma^{\alpha \beta} \mu_R \right) F_{\alpha \beta}$$

op. is dim5 at low energy, dim6 in SMEFT... what mass upstairs? M : $?m_f \rightarrow v$?

But what about the dipole?

the dipole operator allows on-shell fermion to emit on-shell γ : $\mu \rightarrow e\gamma$, edms, g-2

$$\delta \mathcal{L}_{\mu \to e \gamma} = \frac{M}{\Lambda_{LFV}^2} \left(C_{D,L} \overline{e_R} \sigma^{\alpha \beta} \mu_L + C_{D,R} \overline{e_L} \sigma^{\alpha \beta} \mu_R \right) F_{\alpha \beta}$$

op. is dim5 at low energy, dim6 in SMEFT... what mass upstairs? M : $?m_f \rightarrow v?$

KunoOkada (me): $M=m_{\mu}$ for $\mu \rightarrow e\gamma$, $M=m_{e}$ for d_{e} :

$$BR(\mu \to e\gamma) < 4.2 \times 10^{-13} \Rightarrow \Lambda_{LFV}^{e\mu} \gtrsim 10^4 v$$

 $d_e \leq 4.2 \times 10^{-30} e \text{cm} \Rightarrow \Lambda_{NP}^{ee} \gtrsim 3 \times 10^4 v$

EU Strategy : M = v

$$BR(\mu \to e\gamma) \Rightarrow \Lambda_{\rm LFV}^{e\mu} \gtrsim 4 \times 10^5 v$$

$$d_e \Rightarrow \Lambda_{NP}^{ee} \gtrsim 4 \times 10^6 v$$

what we know about LFV: bounds/upcoming reach

$$\Delta LF=1, \Delta QF=0 \quad (\Delta LF=\Delta QF=1)$$
 , $(\Delta LF=2)$

some processes	current constraints on BR	future sensitivities
$\mu \rightarrow e \gamma$	$< 4.2 \times 10^{-13}$	$6 \times 10^{-14} \; (\mathrm{MEG}) \rightarrow$
$\mu \rightarrow e\bar{e}e$	$< 1.0 \times 10^{-12}$ (SINDRUM)	10^{-16} (202x, Mu3e)
$\mu Ti \rightarrow eTi$	$< 6 imes 10^{-13}$, (SINDRUMII)	$10^{-(16 ightarrow ?)}$ (Mu2e,COMET)
$\mu Au \to eAu$	$<7 imes10^{-13}$, (SINDRUMII)	$10^{-(18 ightarrow ?)}$ (PRISM/PRIME/ENIGMA)
$(\mu \rightarrow e \gamma \gamma)$	$<7.2 imes10^{-11})$ (CrystalBox)	
$ au ightarrow \{e, \mu\} \gamma$	$< 3.3, 4.4 \times 10^{-8}$	$few imes 10^{-9}$ (Belle-II)
$ au ightarrow e ar{e} e, \mu ar{\mu} \mu, e ar{\mu} \mu$	$< 1.5 - 2.7 \times 10^{-8}$	$few \times 10^{-9}$ (Belle-II, LHCb?)
$\tau \to \begin{Bmatrix} e \\ \mu \end{Bmatrix} \{\pi, \rho, \phi, \ldots\}$	$\lesssim \text{few} \times 10^{-8}$	$few \times 10^{-9}$ (Belle-II)
$h o au^{\pm} \ell^{\mp}$	$< 1.5, 2.2 \times 10^{-3}$ (ATLAS/CMS)	$<2 imes10^{-4}$ (ILC)
$h o \mu^{\pm} e^{\mp}$	$<6.1 imes10^{-5}$ (ATLAS/CMS)	2×10^{-5} (ILC)
$Z \rightarrow e^{\pm} \mu^{\mp}$	$<7.5\times10^{-7}$ (ATLAS)	Pezzullo-ATLAS+CMS
$Z ightarrow l^{\pm} au^{\mp}$	$< \times 10^{-7}$ (ATLAS)	Pinsard-CPV in H and Z decays
$K^+ \to \pi^+ \bar{\mu} e$	$< 4.7 \times 10^{-12} $ (E865)	10^{-12} (NA62)
•••		
muonium	$P_{M\bar{M}} < 8.2 \times 10^{-11} \; ext{(PSI)}$	$2 \times 10^{-14} \text{ (MACE)}$

The $\tau \leftrightarrow l$ sector: $marvellous\ place\ to\ observe\ LFV$

many processes: current data give indep bounds on magnitude of (almost) all operator coeffs, with $\Lambda_{\rm LFV}\sim 10~\text{TeV}$

⇒ promising for distinguishing models (+insensitive to most loops≈theoretically simple)

expected sensitivity of Bellell: BR $\lesssim 10^{-9} \to 10^{-10} \Leftrightarrow \Lambda_{\rm LFV} \sim 30$ TeV.

(taken from BanerjeeEtal, Snowmass WPaper 2203.14919) dipole as $C_{\gamma}v\mathcal{O}_D=C_Dm_{ au}\mathcal{O}_D$!

EFT for the $\mu \leftrightarrow e$ sector

M Ardu, B Echenard, S Lavignac

(only) three processes with restrictive bounds +exceptional upcoming exptal sensitivities

1. if $\mu \leftrightarrow e$ LFV is there, will we see it?

I want to know what data tells me about models (not what models prefer for data) \Rightarrow use EFT...

3 are there are too many operators in EFT?

- **4.** if we see $\mu \leftrightarrow e$, can we learn something about the model?
- **2.** count exptal observables (~ 12)

Are $\mu \rightarrow e \gamma$, $\mu \rightarrow e \bar{e} e$, $\mu A \rightarrow e A$ sufficient for discovery? 2010.00317

Problem: below m_W , (\sim 100) 4-legged ΔQF =0 $\mu\leftrightarrow e$ interactions \approx operators, few are measured

Question: if $\Delta QF=0$, $\mu \to e$ occurs, will it contribute to $\mu \to e\gamma$, $\mu \to e\bar{e}e$ or $\mu A \to eA$?

Can show : SM loops ensure almost every $\Delta QF=0,\ \mu\to e$ interaction with ≤ 4 legs, contributes $\gtrsim \mathcal{O}(10^{-3})$ to amplitudes $\mu\!\to\!e\gamma$, $\mu\!\to\!e\bar{e}e$ and/or $\mu\!A\!\to\!eA$ (not $\bar{e}\mu G\widetilde{G}$...)

Answer: ?Probably yes? (modulo cancellations)

that is: current bounds sensitive to $\Lambda_{\rm LFV} \lesssim \left\{ \begin{array}{cc} 100 \to 300 & {\rm TeV~at~tree} \\ 3 \to 10 & {\rm TeV~at~loop} \end{array} \right.$

What can be measured in $\mu \rightarrow e \gamma$ or $\mu \rightarrow e \bar{e} e$? (review from KunoOkada)

KunoOkada

$$\delta \mathcal{L}_{\stackrel{\mu \to e \gamma}{\mu \to e \bar{e} e}} \Big|_{m_{\mu}} = \frac{1}{v^{2}} \Big[C_{DR}(m_{\mu} \bar{e} \sigma^{\alpha \beta} \mu_{R}) F_{\alpha \beta} + C_{SRR}(\bar{e} P_{R} \mu) (\bar{e} P_{R} e) + C_{VLR}(\bar{e} \gamma^{\alpha} \mu_{L}) (\bar{e} \gamma_{\alpha} e_{R}) + C_{VLL}(\bar{e} \gamma^{\alpha} P_{L} \mu) (\bar{e} \gamma_{\alpha} P_{L} e) \Big] + \frac{1}{v^{2}} \Big[R \leftrightarrow L \Big] \quad , \quad \frac{1}{v^{2}} = 2\sqrt{2} G_{F}$$

What can be measured in $\mu \rightarrow e \gamma$ or $\mu \rightarrow e \bar{e} e ?$ (review from KunoOkada)

KunoOkada

$$\delta \mathcal{L}_{\stackrel{\mu \to e\gamma}{\mu \to e\bar{e}e}}\Big|_{m_{\mu}} = \frac{1}{v^{2}} \Big[C_{DR}(m_{\mu}\bar{e}\sigma^{\alpha\beta}\mu_{R})F_{\alpha\beta} + C_{SRR}(\bar{e}P_{R}\mu)(\bar{e}P_{R}e) + C_{VLR}(\bar{e}\gamma^{\alpha}\mu_{L})(\bar{e}\gamma_{\alpha}e_{R}) + C_{VLL}(\bar{e}\gamma^{\alpha}P_{L}\mu)(\bar{e}\gamma_{\alpha}P_{L}e) \Big] + \frac{1}{v^{2}} \Big[R \leftrightarrow L \Big] \quad , \quad \frac{1}{v^{2}} = 2\sqrt{2}G_{F}$$

 $\mu \to e \gamma$ with μ -polarisation fraction P_{μ} , $\theta_e =$ angle between μ -spin and \vec{p}_e

$$\frac{dBR(\mu \to e \gamma)}{d\cos\theta_e} = 192\pi^2 \Big[|C_{DR}|^2 (1 - P_{\mu}\cos\theta_e) + |C_{DL}|^2 (1 + P_{\mu}\cos\theta_e) \Big]$$
 KunoOkada

 $m{\mu} \! o \! ear{e}e$: (e relativistic \Rightarrow negligeable interference between $e_L, e_R)$

$$BR = \frac{|C_{S,LL}|^2}{8} + 2|C_{V,RR} + 4eC_{D,L}|^2 + (64\ln\frac{m_{\mu}}{m_e} - 136)|eC_{D,L}|^2$$
OkadaOkumuraShimizu

 $+ |C_{V,RL} + 4eC_{D,L}|^2 + \{L \leftrightarrow R\}$

 μ pol. + e angular distributions \Rightarrow measure 4l coefficients + some phases

 \Rightarrow measure magnitude of $\{C_{DR}, C_{VLL}, C_{VLR}, C_{SRR}, +[L \leftrightarrow R]\}$

If see $\mu A \rightarrow eA$ — what can be measured? (Haxton talk with this title!)

KunoNagamineYamazaki

- μ^- captured by nucleus, falls to 1s. (can obtain some μ polarisation) $\mu \leftrightarrow e$ via dipole (with E) or $C^N_{\Gamma,X}(\bar{e}\Gamma P_X\mu)(N\Gamma N)$

If see $\mu A \rightarrow eA$ — what can be measured? (Haxton talk with this title!)

KunoNagamineYamazaki

• μ^- captured by nucleus, falls to 1s. (can obtain some μ polarisation) • $\mu \leftrightarrow e$ via dipole (with E) or $C^N_{\Gamma,X}(\bar{e}\Gamma P_X\mu)(N\Gamma N)$

ullet leading "Spin Indep." contribution from $\{D,V,S\}$, coherent across A (BR grows with A) Spin Indep. conversion ratio on target A: KitanoKoikeOkada 2002

$$\frac{32G_F^2m_\mu^5}{\Gamma_{cap}}\Big[|I_{V,A}^p\tilde{C}_{V,L}^p+I_{S,A}^p\tilde{C}_{S,R}^p+I_{V,A}^n\tilde{C}_{V,L}^n+I_{S,A}^b\tilde{C}_{S,R}^n+I_{D,A}C_{D,R}|^2+|L\leftrightarrow R|^2\Big]\\ I_{\Gamma,A}^N=\int_{\text{nucleus A}}\text{lepton wavefns}\times\text{S/V density of }N\text{s} \qquad\qquad \text{Hitlin, Haxton}$$

include Spin Dependent (real nuclear phys caln)

better neutron densities

more targets

more operators

• NLO χ PT ...

DKunoUesakaYamanaka

 \bullet with sufficient targets + th. accuracy, measure all Cs?

assume $(\mu A \to eA)_{SI}$ now, constrains $\{C_{Al,L}, C_{Al,R}, C_{Au\perp,L}, C_{Au\perp,R}\}$

DKunoYamanada

CiriglianoDKuno, DKunoSaporta

HeeckSzafronUesaka

CiriglianoEtal 2203.09547

Hoferichter Menendez Noel

to define operators for targets:

Spin Indep. conversion ratio on target A,

KitanoKoikeOkada 2002

$$\frac{32G_F^2 m_{\mu}^5}{\Gamma_{cap}} \Big[|I_{V,A}^p \tilde{C}_{V,L}^p + I_{S,A}^p \tilde{C}_{S,R}^p + I_{V,A}^n \tilde{C}_{V,L}^n + I_{S,A}^b \tilde{C}_{S,R}^n + I_{D,A} C_{D,R}|^2 + |L \leftrightarrow R|^2 \Big]$$

 \Rightarrow target A identified by unit vector

$$\vec{u}_A = \frac{1}{\sqrt{\sum I_{\Gamma}^2}} \left(I_{V,A}^p, I_{S,A}^p, I_{V,A}^n, I_{S,A}^b, I_{D,A} \right)$$

and sees coeff. $C_A = \vec{C} \cdot v_A$ of operator $O_A = \vec{O} \cdot v_A$ (check:substitute into BR) Ex, for Al (all $\{I_{\Gamma}\}$ comparable)

$$\mathcal{O}_{Al} = \frac{1}{2} \left(O_{V,L}^p + O_{S,R}^p + O_{V,L}^n + O_{S,R}^n + \frac{1}{2} O_{D,R} \right)$$
can write $\mathcal{O}_{Au} = \cos \theta_{Al-Au} O_{Al} + \sin \theta_{Al-Au} O_{Au,\perp}$

KKO accuracy \approx 2 indep targets:light + heavy $\Rightarrow \mu A \rightarrow eA$ now constrains $\{C_{Al,L}, C_{Al,R}, C_{Au\perp,L}, C_{Au\perp,R}\}$

DKunoYamanaka

many operators+few constraints=using inconvenient basis

Have 6 (+6) constraints on e_L (e_R) operator coefficients. Focus on e_L . Want to change basis to scale -dependent basis of constrained 6-d subspace.

1. $\mu \rightarrow e \gamma$ measures $C_{D,R}(m_{\mu})$ Solving RGEs for coefficients (arranged in row vector) gives:

$$\vec{C}(m_{\mu}) = \vec{C}(\Lambda_{\rm LFV}) G(m_{\mu}, \Lambda_{\rm LFV})$$

so measured $C_{DR} \sim$ weighted sum of many Cs at Λ_{LFV} . Or, a single coeff of a weighted sum of operators...

2-6. repeat for other independent constraints.

The "excess operators/flat directions" (experimentally inaccessible) are orthogonal, and therefore irrelevant.

Basis should span the finite-eigenvalue subspace of the correlation matrix.

what to do with this basis?

(parenthese: are there too many operators in EFT?

1. operators (more-or-less) correspond to observable interactions

"blob" any Lorentz contraction, coupling of inverse mass dimension.

Are there too many operators in EFT?

1. operators (more-or-less) correspond to observable interactions

$$Y_D m_\mu \bar{e} \sigma \cdot F \mu_X + Y_\Gamma^{4l} (\bar{e} \Gamma \mu_X) (\bar{e} \Gamma e_Y) + Y_\Gamma^{2l2q} (\bar{e} \Gamma \mu_X) (\bar{q} \Gamma q_Y) + Y^{GG} (\bar{e} \Gamma \mu_X) GG + Y^{FF} (\bar{e} \Gamma P_X \mu) FF$$

"\Gamma" any Lorentz contraction, coupling Y of inverse mass dimension.

- 2. but few (well-measured) $\mu \leftrightarrow e$ interactions; which exptalists focus on measuring...
- 3. this is perceived as a fact, not a problem
- 4. ...? so why is it a problem that there is theory parametrisation for interactions that exptalists don't observe? ??
- 5. in EFT, do what exptalists do: define an operator basis corresponding to the observables... (no physics in a basis choice. But some bases more convenient than others)

...so with 12 observables, do EFT in 12-d space.

what to do with this basis?

if see $\mu \rightarrow e\gamma$, $\mu \rightarrow e\bar{e}e$, or $\mu A \rightarrow eA$...?can distinguish models?

...model predictions studied for decades...

EFT recipe to study this: (not scan model space—no measure)

- data is a "12-d" ellipse/box in coefficient-space (in an ideal theorist's world)
- ullet with RGEs, can take ellipse to $\Lambda_{
 m LFV}$
- ullet are there parts of ellipse that a model cannot fill? If yes, model can be distinguished/ruled out by $\mu \leftrightarrow e$ data.

Apply recipe:

- 1) type II seewaw
- 2) (singlet LQ for R_D^*)
- 3) ...

Type II seesaw — add SU(2) triplet scalar \vec{T}

 $\mathcal{L} \supset \left([Y]_{\alpha\beta} \, \overline{\ell_{\alpha}^c} \varepsilon \vec{\tau} \cdot \vec{T} \ell_{\beta} + M_T \lambda_H \ H \varepsilon \vec{\tau} \cdot \vec{T^*} H + \text{h.c.} \right) + \dots$ get $[m_{\nu}]$ at tree (NB: 2 mass scales, so unclear notion of Λ_{LFV}):

Type II seesaw — add SU(2) triplet scalar \vec{T}

 $\mathcal{L} \supset \left([Y]_{\alpha\beta} \, \overline{\ell_{\alpha}^c} \varepsilon \vec{\tau} \cdot \vec{T} \ell_{\beta} + M_T \lambda_H \ H \varepsilon \vec{\tau} \cdot \vec{T^*} H + \text{h.c.} \right) + \dots$ get $[m_{\nu}]$ at tree (NB: 2 mass scales, so unclear notion of Λ_{LFV}):

expect $\mu \rightarrow e\bar{e}e$ at tree (vanish via Majorana phases ϕ_i):

$$\mu \to e\bar{e}e$$

$$T$$

$$e$$

$$C_{V,LL}^{e\mu ee} \sim \frac{[Y]_{\mu e}[Y^*]_{ee}v^2}{M_T^2}$$

and $\mu \rightarrow e\gamma, \mu A \rightarrow eA$ at loop (weaker dependence on unknown model params)

$$\mu \to e \gamma$$

$$\mu \to e \mu$$

$$\mu A \to e A$$

$$\mu A \to e A$$

$$\mu \to e \lambda$$

Type II seesaw: predictions

 $\begin{array}{c} \text{recall 12 (complex) operator coefficients} \\ \left\{ \begin{array}{c} C_{DR}, \ C_{VLL}^{e\mu ee}, \ C_{VLR}^{e\mu ee}, \ C_{SRR}^{e\mu ee}, \ C_{AlightL}, \ C_{AheavyR} \\ C_{DL}, \ C_{VRL}^{e\mu ee}, \ C_{VRR}^{e\mu ee}, \ C_{SLL}^{e\mu ee}, \ C_{AlightL}, \ C_{AheavyR} \end{array} \right. \\ \end{array}$

• seven coefficients for LFV-involving-singlet-leptons are negligeable (predicted by all m_{ν} models where NP interacts with doublets); test by polarising μ . Kuno Okada

Type II seesaw: predictions

recall 12 (complex) operator coefficients $\left\{ \begin{array}{l} C_{DR}, \ C_{VLL}^{e\mu ee}, \ C_{VLR}^{e\mu ee}, \ C_{SRR}^{e\mu ee}, \ C_{AlightL}, \ C_{AheavyR} \\ C_{DL}, \ C_{VRL}^{e\mu ee}, \ C_{VRR}^{e\mu ee}, \ C_{SLL}^{e\mu ee}, \ C_{AlightL}, \ C_{AheavyR} \end{array} \right.$

- seven coefficients for LFV-involving-singlet-leptons are negligeable (predicted by all m_{ν} models where NP interacts with doublets); test by polarising μ . Kuno Okada
- $C_{VLL}^{e\mu ee}$ ($\mu \to e\bar{e}e$) or $C_{Al,L}(\mu A \to eA)$ can vanish (also any of C_{DR} for $m_{\nu} \gg$)
- $C_{VLL}^{e\mu ee}$ ($\mu \to e\bar{e}e$) "naturally" large: predict $C_{DR}/C_{Al,L}$ for small $C_{VLL}^{e\mu ee}$.

prelim!

model lives in green area expt can probe whole plot: $\tan \theta_{a,b}: 10^{-3} \to 10$ vert. axis $\sim \text{loop/tree}$; horiz. axis $\sim |C_D|/|C_{Al}|$

A leptoquark (for R_{D^*})

SU(2) singlet scalar LQ, mass m_{LQ} , interactions to all flavours of l and q:

$$(-\lambda_L^{lr}\overline{\ell}_l\varepsilon q_r^c + \lambda_R^{lr}\overline{e}_lu_r^c)S + h.c.$$

- \star generates scalar (+ vector) $\mu A \rightarrow eA$ operators at tree ($\mu A \rightarrow eA$ specially sensitive to scalar ops)
- * generates LFV operators for singlet leptons as well as doublets

 \Rightarrow it can fill all exptally accessible space? Consistent with any $\mu \leftrightarrow e$ observation? Not quite: not generate $(\bar{e}P_{R,L}\mu)(\bar{e}P_{R,L}e)$ (dim8 in SMEFT), detectable to $\mu \rightarrow e\bar{e}e$.

Plot the exptal bounds and reach

Restrict to 3-d space of coefficients of $\mu \to e_L \gamma, \mu \to 3e_L, \mu Al \to e_L Al (=z,x,y)$. Model predicts a vector $\vec{C}/\Lambda_{\rm LFV}^2$;

Plot the allowed parameter space

Restrict to 3-d space of coefficients of $\mu \to e_L \gamma, \mu \to 3e_L, \mu Al \to e_L Al (=z,x,y)$. Model predicts a vector $\vec{C}/\Lambda_{\rm LFV}^2$; can fix $|\vec{C}|=1$ and constrain $\Lambda_{\rm LFV}(\theta,\phi)$:

$$\vec{C} \cdot \vec{v}_{\mu \to e_L \gamma} \equiv \frac{v^2 \cos \theta}{\Lambda_{\rm LFV}^2}$$

see 2204.00564

Plot reach of $\mu \rightarrow e\gamma, \mu \rightarrow e\bar{e}e$ and $\mu A \rightarrow eA$

(in theoretically self-consistent EFT, including LO loops, cancellations...)

Restrict to 3-d space of coefficients of $\mu \to e_L \gamma, \mu \to 3e_L, \mu Au \to e_L Au (=z,x,y)$. Impose $|\vec{C}|{=}1$ and use spher. coord.:

Impose
$$|\vec{C}|$$
=1 and use spher. coord.: $\vec{C} \cdot \vec{v}_{\mu \to e_L \gamma} \equiv \frac{v^2 \cos \theta}{\Lambda_{\rm LFV}^2}$

Define $\kappa_D = \cot g(\theta_D - \pi/2)$

Summary

 $\mu \to e\gamma, \mu \to e\bar{e}e$ and $\mu A \to eA$ have exceptional sensitivity $(\Lambda_{\rm LFV} \lesssim 10^2 \to 10^3 \text{ now,} \Lambda_{\rm LFV} \lesssim 10^3 \to 10^4 \text{ upcoming})$, to only a few operators at low energy, so:

interesting to include RGEs at leading order, because ensure that almost every $\mu \to e$ operator (in chiral basis) with ≤ 4 legs contributes at $\gtrsim \mathcal{O}(10^{-3})$ to $\mu \to e \gamma$ and/or $\mu \to e \bar{e} e$ and/or $\mu A \to e A$

Can even have interesting sensitivity to products of some $(\mu \to \tau) \times (\tau \to e)$ interactions!

But many more $\mu \leftrightarrow e$ interactions/operators than observables. In EFT, convenient to restrict to exptally probed subspace of operators/coefficients; this allows to

- plot experimental reach
- ullet explore whether $\mu \leftrightarrow e$ data can test models

Happy Workshop!

BackUp

... its always interesting to measure independent observables!

wrt LFV Higgs decays and $\mu \to e \gamma$: A boson produced in gg or VBF at colliders, decaying $\phi \to \mu^{\pm} e^{\mp}$, contributes to $\mu \to e \gamma$ via same diagrams: but with different weights. (and many other contributions to $\mu \to e \gamma$...)

So theoretically veery interesting to see $\phi \to \mu^{\pm} e^{\mp}$ and $\mu \to e \gamma$: maybe we could learn something about cancellations?

...but: uncertainties in matching to quarks

suppose measure coefficients of LFV ops with vector and scalar currents of n or p, from $\mu A \to eA$ on different targets Then match to quarks:

$$\begin{pmatrix} C_{V,L}^{pp} \\ C_{V,L}^{nn} \\ C_{S,R}^{pp} \\ C_{S,R}^{nn} \end{pmatrix} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & G_S^{pu} & G_S^{pd} \\ 0 & 0 & G_S^{nu} & G_S^{nd} \end{bmatrix} \begin{pmatrix} C_{V,L}^{uu} \\ C_{V,L}^{dd} \\ C_{S,R}^{uu} \\ C_{S,R}^{dd} \end{pmatrix}$$

- But for scalar ops, $G_S^{p,u}=G_S^{n,d}\simeq G_S^{p,d}\simeq G_S^{n,u}$ so need great precision to differentiate LFV ops with scalar currents of u or d:(
- ullet and...curent determinations of Gs from lattice and pions disagree by 50%

$$\mu \rightarrow e \gamma \gamma$$

But to reconstruct $\mu \to e$ bottom-up, need all data?

$$eg\ BR(\pi^0 \to e^{\pm}\mu^{\mp}) < 3.6 \times 10^{-10}$$
, or $BR(\Upsilon \to l_1\bar{l}_2) \stackrel{<}{_{\sim}} 10^{-6}$?

Ummm: μ decays weakly $\Leftrightarrow \tau_{\mu} \sim 10^{-6}$ sec.

vs
$$au_{\pi^0} \sim 10^{-16}$$
 sec (loop-suppressed QED), or $au_\Upsilon \sim 10^{-20}$ sec (tree QED/QCD)

Compare $weak \mu$ decays to $anomalous QED \pi_0$ decay

(write
$$\delta \mathcal{L} \sim \frac{1}{\Lambda_{\rm LFV}^2} (\bar{e}\mu)(\bar{q}q) + \frac{1}{\Lambda_{\rm LFV}^2} (\bar{e}\gamma\mu)(\bar{e}\gamma e)$$
):

$$BR(\mu \to e\bar{e}e) = \frac{\Gamma(\mu \to e\bar{e}e)}{\Gamma(\mu \to e\bar{\nu}\nu)} \sim \left| \frac{m_{\mu}^2/\Lambda_{\rm LFV}^2}{m_{\mu}^2 G_F} \right|^2 \sim \frac{v^4}{\Lambda_{\rm LFV}^4} \lesssim 10^{-12} \Rightarrow \Lambda_{\rm LFV} \gtrsim 10^5 {\rm GeV}$$

$$BR(\pi_0 \to \bar{e}\mu) = \frac{\Gamma(\pi_0 \to \bar{e}\mu)}{\Gamma(\pi_0 \to \gamma\gamma)} \sim \left| \frac{m_\pi^2/\Lambda_{LFV}^2}{\alpha/4\pi} \right|^2 \sim \left(\sqrt{\frac{4\pi}{\alpha}} \frac{m_\pi}{\Lambda_{LFV}} \right)^4 \Rightarrow \Lambda_{LFV} \gtrsim \text{TeV}$$

... rare μ processes have exceptional sensitivity, because μ decay weak. Other $\mu \to e$ processes constrain "orthogonal" operator coefficients, less well.

Climbing the mountain for $\mu \to e$: EFT

Renormalisation Group Eqns/matching/scheme-dep./...

(conceptually simple, technically involved)

Can't we do without RGEs, etc?

in discovery mode for LFV+electroweak loops are small...include later?

counterex: $\mu A \to eA$ in model giving tensor $2\sqrt{2}G_FC_T^{uu}(\overline{e}\sigma P_R\mu)(\overline{u}\sigma u)$ at weak scale

1: forget loops quark tensor matches to nucleon spin $\bar{N}\gamma\gamma_5N$: $(N\in\{n,p\})$

$$\Rightarrow BR(\mu A o eA) pprox BR_{SD} pprox rac{1}{2} |C_T^{uu}|^2$$
 (CiriglianoDKuno) Hoferichter etal

2: include QED loops $m_W \to 2$ GeV:

Then, scalar ops have enhanced nuclear matrix elements, and are SpinIndep:

$$BR(\mu A \rightarrow eA) \approx BR_{SI} \sim Z^2 |2C_T^{uu}|^2 \sim 10^3 BR_{SD}$$

loops can change Lorentz structure/external legs \Rightarrow different operator whose coefficient better constrained. Important for $\mu \to e$. (?not $\tau \to l$?)

need operators+bases for 3 EFTs?

 $\Lambda_{NP} \gg 1$

$$\{Z, W, \gamma, g, h, t, f\}$$

$$SU(3) \times SU(2) \times U(1)$$

 $m_W \sim m_h \sim m_t$

NB: $\frac{2 \text{GeV}}{|m_{\mu}|} \sim 20$

$$\{\gamma, g, f\}$$

$$QCD \times QED$$

2 GeV $\sim m_c, m_b, m_ au$

$$\{n, p, \pi, \gamma, e, \mu\}$$

QED
$$+\chi PT$$

data $(\mu \rightarrow e\gamma, \mu \rightarrow e\bar{e}e, \mu A \rightarrow eA)$

operators + RGEs: everything to which data could be sensitive

operator basis: below m_W , all gauge invariant operators with \leq 4 legs \approx 100 ops. add to \mathcal{L}_{SM} as $\delta \mathcal{L} = 2\sqrt{2}G_F C_{V,LL}^{e\mu ee}(\overline{e}\gamma\mu)(\overline{e}\gamma e) + ...$

(not dim6: bottom-up perspective/ operator dim. not preserved in matching)

above m_W : dim 6 + selected dim 8 (guess by powercounting)

ArduDavidson

ex: $(\bar{e}\mu)G_{\alpha\beta}G^{\alpha\beta}$ is dim7 < m_W , dim8 in SMEFT. But

ullet dim6 heavy quark scalar ops $(ar e\mu)(ar QQ)$ match to $(ar e\mu)GG$ at m_Q (coef. $C_{QQ}/(m_Q\Lambda_{
m LFV}^2)$):

• gluons contribute most of the mass of the nucleon

ShifmanVainshteinZahkarov

$$\langle N|m_N \overline{N}N|N\rangle = \sum_{q\in\{u,d,s\}} \langle N|m_q \overline{q}q|N\rangle - \frac{\alpha_s}{8\pi} \beta_0 \langle N|GG|N\rangle$$

 \Rightarrow dim7 $(\bar{e}\mu)GG$ contributes significantly to $\mu A \to eA$ via scalar $\mu \to e$ interactions with nucleons N.

operators + RGEs: everything to which data could be sensitive

operator basis: below m_W , all gauge invariant operators with \leq 4 legs \approx 100 ops. add to \mathcal{L}_{SM} as $\delta \mathcal{L} = 2\sqrt{2}G_F C_{V,LL}^{e\mu ee}(\overline{e}\gamma\mu)(\overline{e}\gamma e) + ...$

(not dim6: bottom-up perspective/ operator dim. not preserved in matching)

above m_W : dim 6 + selected dim 8 (guess by powercounting)

ArduDavidson

RGEs+matching: at "leading order" \equiv largest contribution of each operator to each observable. (2GeV $\rightarrow m_W$:resum LL QCD, $\alpha_e \log$, some $\alpha_e^2 \log^2$, $\alpha_e^2 \log$)

why not just 1-loop RGEs?

- \bullet expand in loops, hierarchical Yukawas, $1/\Lambda_{\rm LFV}^2,\ldots$ largest effect maybe not 1-loop (ex: Barr-Zee)
- sometimes 1-loop vanishes...eg: 2-loop $\Delta a_\mu|_{EW}\simeq$ 1-loop $\Delta a_\mu|_{EW}$ or 2-loop log-enhanced
 - = mixing vector ops to dipole in 2-loop RGEs.

What can one learn in bottom-up EFT?

But 3 processes, ~ 100 operators \Rightarrow zoo of flat directions?

DKunoYamanaka

Count constraints: (write
$$\delta \mathcal{L} = C_{Lorentz,XY}^{flavour}/v^n$$
 $\mathcal{O}_{Lorentz,XY}^{flav}$, $X,Y \in \{L,R\}$)

$$\mu \rightarrow e\gamma$$
: $BR(\mu \rightarrow e\gamma) = 384\pi^2(|C_{D,L}|^2 + |C_{D,R}|^2) \Rightarrow 2$ constraints

 $\mu \to e\bar{e}e$: (e relativistic \approx chiral, neglect interference between e_L, e_R)

$$BR = \frac{|C_{S,LL}|^2}{8} + 2|C_{V,RR} + 4eC_{D,L}|^2 + (64\ln\frac{m_{\mu}}{m_e} - 136)|eC_{D,L}|^2 + |C_{V,RL} + 4eC_{D,L}|^2 + \{L \leftrightarrow R\} \Rightarrow 6 \text{ more constraints}$$

 $\mu A \rightarrow eA : (S_A^N, V_A^N = \text{integral over nucleus A of } N \text{ distribution} \times \text{lepton wavefns, different for diff. } A)$

$$BR_{SI} \sim Z^{2} |V_{A}^{p} \tilde{C}_{V,L}^{p} + S_{A}^{p} \tilde{C}_{S,R}^{p} + V_{A}^{n} \tilde{C}_{V,L}^{n} + S_{A}^{b} \tilde{C}_{S,R}^{n} + D_{A} C_{D,R}|^{2} + |L \leftrightarrow R|^{2}$$

 $BR_{SD} \sim |\tilde{C}_{A}^{N} + 2\tilde{C}_{T}^{N}|^{2}$

SI bds on Au, Ti, (+ SD on ?Ti, Au?) \Rightarrow 4 + 2 more constraints future: improved theory, 3SI+2SD targets \Rightarrow 6+4 constraints

is 12-20 constraints on ~ 100 operators a problem?

many operators+few constraints=using inconvenient basis

Have 6 (+6) constraints on e_L (e_R) operator coefficients. Focus on e_L . Want to change basis to scale -dependent basis of constrained 6-d subspace.

1. $\mu \rightarrow e \gamma$ measures $C_{D,R}(m_{\mu})$ Have RGEs for coefficients (arranged in row vector)

$$\mu \frac{\partial}{\partial \mu} \vec{C}(\mu) = \vec{C}(\mu) \mathbf{\Gamma}(\mu, g_s(\mu), ...) \quad \Rightarrow \quad \vec{C}(m_\mu) = \vec{C}(m_W) \mathbf{G}(m_\mu, m_W)$$

solved as scale-ordered exponential (resummed QCD, $\alpha \log$, some $\alpha^2 \log^2$, $\alpha^2 \log$)

 \Rightarrow define scale-dep $\vec{v}_{\mu \to e\gamma}(\Lambda)$, column of **G** such that: $C_{DR}(m_{\mu}) = \vec{C}(\Lambda) \cdot \vec{v}_{\mu \to e\gamma}(\Lambda)$ $\vec{v}_{\mu \to e\gamma}(\Lambda)$ is scale-dep basis vector for constrainable subspace

2-6. repeat for other independent constraints. So obtain scale-dep basis vectors for the subspace, defined from the observables.

The "flat directions" (experimentally inaccessible) are orthogonal, and therefore irrelevant.

Basis should span the finite-eigenvalue subspace of the correlation matrix.

what to do with this basis?

Wanted to use EFT to take exptal info to models... so:

- 1. (match to models, and explore what we can learn) (not need to run RGEs at each point in model space) are some regions of 6-d space inaccessible to some models?
- 2. make plots of the excluded region in 6-d space ?

 ⇔ illustrate the reach and complementarity of experiments

Including SM loop corrections to operators

ex: 1-loop QED + QCD (+2-loop QED
$$V\rightarrow D$$
)

$$f_2$$
 e
 f_2
 f_2

solve (analytically/numerically):
$$\mu \frac{\partial}{\partial \mu} \vec{C} = \frac{\alpha_s}{4\pi} \vec{C} \mathbf{\Gamma}^s + \frac{\alpha_{em}}{4\pi} \vec{C} \mathbf{\Gamma}$$

$$\vec{C}(m_s) = \vec{C}(\Lambda_{s-rs}) \mathbf{C} \qquad \mathbf{C} = \text{for of SM parameters.}$$

$$\vec{C}(m_{\mu}) = \vec{C}(\Lambda_{\rm LFV}) G$$

 $\vec{C}(m_u) = \vec{C}(\Lambda_{LFV}) G$, $G = \text{fn of SM parameters}, \log(\Lambda_{LFV}/\Lambda_{exp})$

For ex:
$$BR(\mu \to e\gamma) = 384\pi^2(|C_{D,L}|^2 + |C_{D,R}|^2) < 4.1 \times 10^{-13} \Rightarrow C_{D,X} \lesssim 10^{-8}$$

$$C_{D,X}(m_{\mu}) = C_{D,X}(m_{W}) \left(1 - 16 \frac{\alpha_{e}}{4\pi} \ln \frac{m_{W}}{m_{\mu}} \right) - \frac{\alpha_{e}}{4\pi e} \left(C_{S,XX}^{\mu\mu} - 8 \frac{m_{\tau}}{m_{\mu}} C_{T,XX}^{\tau\tau} + C_{2loop} \right) \ln \frac{m_{W}}{m_{\mu}}$$

$$+ 16 \frac{\alpha_{e}^{2}}{2e(4\pi)^{2}} \left(\frac{m_{\tau}}{m_{\mu}} C_{S,XX}^{\tau\tau} \right) \ln^{2} \frac{m_{W}}{m_{\mu}} - 8\lambda^{a_{T}} f_{TD} \frac{\alpha_{e}}{4\pi e} \left(\frac{2m_{c}}{m_{\mu}} C_{T,XX}^{cc} - \frac{m_{s}}{m_{\mu}} C_{T,XX}^{ss} - \frac{m_{b}}{m_{\mu}} C_{T,XX}^{bb} \right) \ln \frac{m_{W}}{2\pi}$$

$$+16\frac{\alpha_e^2}{3e(4\pi)^2} \left(\sum_{u,c} 4\frac{m_q}{m_\mu} C_{S,XX}^{qq} + \sum_{d,s,b} \frac{m_q}{m_\mu} C_{S,XX}^{qq} \right) \ln^2 \frac{m_W}{2 \text{GeV}}$$

$$C_{Lor}^{\zeta}(m_W)$$
 on right. $\lambda = \alpha_s(m_W)/\alpha_s(2{\rm GeV}) \simeq 0.44$, $f_{TS} \simeq 1.45$, $a_S = 12/23$, $a_T = -4/23$.

Operator basis $m_{ au} o m_W$: ~ 90 operators

Add QCD×QED-invar operators, representing all 3,4 point interactions of μ with e and flavour-diagonal combination of γ, g, u, d, s, c, b . $Y \in L, R$.

$$\begin{split} m_{\mu}(\overline{e}\sigma^{\alpha\beta}P_{Y}\mu)F_{\alpha\beta} & dim \ 5 \\ \\ (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{e}\gamma_{\alpha}P_{Y}e) & (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{e}\gamma_{\alpha}P_{X}e) \\ (\overline{e}P_{Y}\mu)(\overline{e}P_{Y}e) & dim \ 6 \\ (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{\mu}\gamma_{\alpha}P_{X}\mu) & (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{\mu}\gamma_{\alpha}P_{X}\mu) \\ (\overline{e}P_{Y}\mu)(\overline{\mu}P_{Y}\mu) & (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{f}\gamma_{\alpha}P_{X}f) \\ (\overline{e}P_{Y}\mu)(\overline{f}P_{Y}f) & (\overline{e}P_{Y}\mu)(\overline{f}P_{X}f) & f \in \{u,d,s,c,b,\tau\} \\ (\overline{e}\sigma P_{Y}\mu)(\overline{f}\sigma P_{Y}f) & (\overline{e}P_{Y}\mu)(\overline{f}P_{X}f) & f \in \{u,d,s,c,b,\tau\} \\ (\overline{e}\sigma P_{Y}\mu)(\overline{f}\sigma P_{Y}f) & \frac{1}{m_{t}}(\overline{e}P_{Y}\mu)G_{\alpha\beta}\widetilde{G}^{\alpha\beta} & dim \ 7 \\ & \frac{1}{m_{t}}(\overline{e}P_{Y}\mu)F_{\alpha\beta}F^{\alpha\beta} & \frac{1}{m_{t}}(\overline{e}P_{Y}\mu)F_{\alpha\beta}\widetilde{F}^{\alpha\beta} & \dots zzzz\dots but \sim 90 \ coeffs! \\ (P_{X},P_{Y}=(1\pm\gamma_{5})/2), \ \text{all operators with coeff} \ -2\sqrt{2}G_{F}C. \end{split}$$

There are dipoles of 2 chiralities

$$D \qquad \overline{e}\sigma^{\alpha\beta}P_L\mu F_{\alpha\beta} \qquad \overline{e}\sigma^{\alpha\beta}P_R\mu F_{\alpha\beta}$$
 which also contribute in $\mu\!\to\!e\gamma$, $\mu\!\to\!e\bar{e}e$.

Six 4-fermions for $\mu \rightarrow e\bar{e}e$, $Y, X \in \{L, R\}, Y \neq X$

$$V \qquad (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{e}\gamma_{\alpha}P_{Y}e) \qquad (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{e}\gamma_{\alpha}P_{X}e)$$

$$S \qquad (\overline{e}P_{Y}\mu)(\overline{e}P_{Y}e)$$

For $\mu A \rightarrow eA$, interactions with nucleons $N \in \{n, p\}$ parametrised by :

$$S, V \qquad \overline{e}P_X\mu\overline{N}N \qquad \overline{e}\gamma^{\alpha}P_X\mu\overline{N}\gamma_{\alpha}N \qquad X \in \{L, R\}$$

$$A, T \qquad \overline{e}\gamma^{\alpha}P_X\mu\overline{N}\gamma_{\alpha}\gamma_5N \qquad \overline{e}\sigma^{\alpha\beta}P_X\mu\overline{N}\sigma_{\alpha\beta}N$$

$$P, Der \qquad \overline{e}P_X\mu\overline{N}\gamma_5N \qquad \overline{e}\gamma^{\alpha}P_X\mu(\overline{N}i\stackrel{\leftrightarrow}{\partial_{\alpha}}\gamma_5N)$$

Matching in χ PT gives Derivative. But absorb in matching chiral basis for the lepton current (relativistic e), into $G_O^{N,q}=$ quark matrix elements in nucleons. but not for the non-rel. nucleons.

Quantifying which targets give independent information (on nucleons)

- 1. neglect Dipole (better sensitivity of $\mu \to e\gamma$ (MEGII) and $\mu \to e\bar{e}e$ (Mu3e). remain to determine: $\vec{C} \equiv (\widetilde{C}_{VR}^{pp}, \widetilde{C}_{SL}^{pp}, \widetilde{C}_{VR}^{nn}, \widetilde{C}_{SL}^{nn})$
- 2. recall that

$$BR_{SI}(A\mu\to Ae)\propto \left|\vec{C}\cdot\vec{v}_A\right|^2$$
 where target vector for nucleus A
$$\vec{v}_A\equiv \left(V_A^{(p)},S_A^{(p)},V_A^{(n)},S_A^{(n)}\right)$$

- 3. So first experimental search (eg on Aluminium) probes projection of \vec{C} of \vec{v}_{Al} ... next target needs to have component \bot to Aluminium! \Leftrightarrow plot misalignment angle θ between target vectors
- 4. how big does θ need to be? overlap integrals have theory uncertainty: $\Delta \theta \begin{cases} \text{nuclear} & \sim 5\% (KKO) \\ NLO \ \chi \text{PT} & \sim 10\% (?) \end{cases}$ Both vectors uncertain by $\Delta \theta$; need misaligned by $2\Delta \theta \approx 10 \rightarrow 20\%$

Current data+ theory uncertainty $\sim 10\%$: want $\Delta\theta > 0.2$ $BR(\mu Au \rightarrow eAu) \leq 7 \times 10^{-13}$ (Au: Z=79) $BR(\mu Ti \rightarrow eTi) \leq 4.3 \times 10^{-12}$ (Ti: Z=22)

 $\vec{v}_A = (V_A^{(p)}, S_A^{(p)}, V_A^{(n)}, S_A^{(n)})$, and $BR \propto |\vec{v}_A \cdot \vec{C}|^2$ $\vec{v}_{Au} \cdot \vec{v}_Z \equiv |\vec{v}_{Au}| |\vec{v}_Z| \cos \theta$...plot θ on vertical axis

In the future...with a 5% theory uncertainty:

First target of Mu2e, COMET: Aluminium (Z=13, A=27)
$$\hat{v}_{Al} \approx \frac{1}{2}(1,1,1,1) \qquad \qquad \text{(recall \tilde{C}_{V}^{pp}, \tilde{C}_{S}^{pp}, \tilde{C}_{V}^{nn}, \tilde{C}_{S}^{nn})}$$

basis of three other "directions".

$$\hat{v}_{np} \equiv \frac{1}{2}(-1, -1, 1, 1) \qquad 0.3$$

$$\hat{v}_{VS} \equiv \frac{1}{2}(1, -1, 1, -1) \qquad 0.2$$

$$\hat{v}_{IsoSV} \equiv \frac{1}{2}(-1, 1, 1, -1) \qquad 0.15$$

$$0.05$$

$$0.05$$

$$0.05$$

probe 3 combinations of SI coeffs

All current data...

$$BR(\mu Au \to eAu) \le 7 \times 10^{-13}$$
 $(Au : Z = 79)$
 $BR(\mu Ti \to eTi) \le 4.3 \times 10^{-12}$ $(Ti : Z = 22)$

$$BR(\mu Pb \rightarrow ePb) \leq 4.6 \times 10^{-11}$$
 $BR(\mu S \rightarrow eS) \leq 7 \times 10^{-11}$ S = Sulpher, Z = 16 $BR(\mu Cu \rightarrow eCu) \leq 1.6 \times 10^{-8}$ Cu = Copper, Z = 29

sensitivity vs constraint

Suppose that $BR(\mu Al \to eAl) \lesssim 10^{-14}$, and : $\delta \mathcal{L}(m_W) = C_T^{uu}(\overline{e}\sigma P_Y \mu)(\overline{u}\sigma u) + C_S^{uu}(\overline{e}P_Y \mu)(\overline{u}u)$

 C_T^{uu}, C_S^{uu} constrained to live inside blue (red) ellipse at exptal scale (at m_W): sensitivity to $C_S^{uu} = \text{cut ellipse} \otimes C_T^{uu} = 0$; constraint = live in projection of ellipse onto C_S^{uu} axis.