The Mu3e experiment

Frederik Wauters on behalf of the Mu3e collaboration Johannes Gutenberg University Mainz

Why searching for CLFV? -> Morning Session

Not a fundamental Standard Model symmetry We have Neutral LFV, v oscillations For p_{exp} ≪ m_{BSM} : EFT approach

Why searching for CLFV? -> Morning Session

How to search for CLFV, i.e. looking for small BSM couplings?

→ Intensity Frontier Measurement

→ Processes with a low Standard Model Background

Muons are great!

- \succ They are leptons with 100% leptonic decay modes very well described in the SM
- > SM background free
- ▶ BSM contributions can be described by EFT <u>arXiv:1702.03020</u> as $m_{mu} \ll \Lambda_{NP}$
- > We can make a lot of them at p-accelerator facilities
- > They live long enough to production \rightarrow experiment

Sweet spot between sensitivity and availability

Why searching for CLFV? -> Morning Session

How to search for CLFV, i.e. looking for small BSM couplings?

→ Intensity Frontier Measurement

→ Processes with a low Standard Model Background

Muons are great!

- > They are leptons with 100% leptonic decay modes very well described in the SM
- SM background free
- ▶ BSM contributions can be described by EFT <u>arXiv:1702.03020</u> as $m_{mu} \ll \Lambda_{NP}$
- > We can make a lot of them at p-accelerator facilities
- > They live long enough to production \rightarrow experiment

Sweet spot between sensitivity and availability

Three golden channels

·······································	μ⁺→e⁺γ	MEG < 4.10-13	⊳	MEGII < 5·10 ⁻¹⁴
, d no neutring	µ⁻N→e⁻N	SUNDRUMII < 7 · 10 ⁻¹³	\Box	DeeMee, Mu2e, COMET < 10 ⁻¹⁶
Ana	µ⁺→e⁺e⁺e⁻	SINDRUM < 1.10-12	⊳	$Mu3e < 2 \cdot 10^{-15}$ ($1 \cdot 10^{-16}$ in a second phase)

Sweet spot between sensitivity and availability

Three golden channels

$\mu^+ \rightarrow e^+ \gamma$	MEG < 4.10 ⁻¹³	ee	MEGII < 5·10 ⁻¹⁴
µ⁻N→e⁻N	SUNDRUMII < 7 · 10 ⁻¹³	\Rightarrow	DeeMee, Mu2e, COMET < 10 ⁻¹⁶
μ⁺→e⁺e⁺e⁻	SINDRUM < 1.10-12	ee	Mu3e < 2·10⁻¹⁵ (1·10 ⁻¹⁶ in a second phase)

Figure adapted from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008)

Why (look at all) three golden channels?

$$\begin{array}{ll} & \mu^+ \rightarrow e^+ \gamma \\ \hline & \mu^- N \rightarrow e^- N \\ \hline & \mu^+ \rightarrow e^+ e^+ e^- \end{array}$$

 $BR(SM) < 10^{-54}$

Sensitive to loop and tree/contact level *new* interactions

...

Sensitive to loop and

tree/contact level new

interactions

Why (look at all) three golden channels?

$$\begin{array}{ll} & \mu^+ \rightarrow e^+ \gamma \\ \hline & \mu^- N \rightarrow e^- N \\ \hline & \mu^+ \rightarrow e^+ e^+ e^- \end{array}$$

1	$\operatorname{Br}(\mu^+)$	$\rightarrow e^+ \gamma)$	Br $(\mu^+ \rightarrow$	$e^+e^-e^+)$	$\mathrm{Br}_{\mu}^{\mathrm{A}}$	$\mathrm{Br}^{\mathrm{Au/Al}}_{\mu ightarrow e}$		
	$4.2 \cdot 10^{-13}$	$4.0\cdot 10^{-14}$	$1.0\cdot 10^{-12}$	$5.0\cdot10^{-15}$	$7.0 \cdot 10^{-13}$	$1.0\cdot 10^{-16}$		
C_L^D	$1.0\cdot10^{-8}$	$3.1 \cdot 10^{-9}$	$2.0 \cdot 10^{-7}$	$1.4\cdot 10^{-8}$	$2.0\cdot 10^{-7}$	$2.9\cdot 10^{-9}$		
$C_{ee}^{S \ LL}$	$4.8 \cdot 10^{-5}$	$1.5 \cdot 10^{-5}$	$8.1\cdot 10^{-7}$	$5.8\cdot10^{-8}$	$1.4\cdot 10^{-3}$	$2.1\cdot 10^{-5}$		
$C_{\mu\mu}^{S \ LL}$	$2.3 \cdot 10^{-7}$	$7.2 \cdot 10^{-8}$	$4.6 \cdot 10^{-6}$	$3.3\cdot10^{-7}$	$7.1 \cdot 10^{-6}$	$1.0\cdot 10^{-7}$		
$C_{\tau\tau}^{S \ LL}$	$1.2 \cdot 10^{-6}$	$3.7\cdot 10^{-7}$	$2.4\cdot 10^{-5}$	$1.7\cdot 10^{-6}$	$2.4 \cdot 10^{-5}$	$3.5\cdot 10^{-7}$		
$C_{\tau\tau}^{T \ LL}$	$2.9\cdot 10^{-9}$	$9.0\cdot10^{-10}$	$5.7\cdot 10^{-8}$	$4.1\cdot 10^{-9}$	$5.9\cdot 10^{-8}$	$8.5\cdot10^{-10}$		
$C_{\tau\tau}^{S LR}$	$9.4 \cdot 10^{-6}$	$2.9\cdot10^{-6}$	$1.8\cdot 10^{-4}$	$1.3 \cdot 10^{-5}$	$1.9\cdot 10^{-4}$	$2.7\cdot 10^{-6}$		
$C_{bb}^{S \ LL}$	$2.8 \cdot 10^{-6}$	$8.6 \cdot 10^{-7}$	$5.4\cdot 10^{-5}$	$3.8\cdot10^{-6}$	$9.0 \cdot 10^{-7}$	$1.2\cdot 10^{-8}$		
$C_{bb}^{T \ LL}$	$2.1 \cdot 10^{-9}$	$6.4\cdot 10^{-10}$	$4.1 \cdot 10^{-8}$	$2.9\cdot 10^{-9}$	$4.2\cdot10^{-8}$	$6.0\cdot10^{-10}$		
$C_{bb}^{S LR}$	$1.7 \cdot 10^{-5}$	$5.1 \cdot 10^{-6}$	$3.2 \cdot 10^{-4}$	$2.3\cdot 10^{-5}$	$9.1 \cdot 10^{-7}$	$1.2\cdot10^{-8}$		
$C_{cc}^{S\ LL}$	$1.4 \cdot 10^{-6}$	$4.4\cdot 10^{-7}$	$2.8\cdot 10^{-5}$	$2.0\cdot 10^{-6}$	$1.8 \cdot 10^{-7}$	$2.4\cdot 10^{-9}$		

. . .

For dipole interactions, MEG ~100 times more sensitive

Why (look at all) three golden channels?

- $\Box \quad \mu^+ \rightarrow e^+ \gamma$
- □ μ⁻N→e⁻N
- $\Box \quad \mu^+ \rightarrow e^+ e^+ e^-$

- \rightarrow Only one single signal, but there is \mathbf{P}_{μ}
 - Some differentiation via N

Why (look at all) three golden channels?

Phase space decay (Dalitz plot)

Why (look at all) three golden channels?

How to look for $\mu^+ \rightarrow e^+ e^+ e^-$?

3 particle decay at rest

- \rightarrow Common vertex
- → Time coincident

How to look for $\mu^+ \rightarrow e^+ e^+ e^-$?

- → Common vertex
- → Time coincident

- → Mono-energetic e^+ and γ
- → back-back coincidence
- → Mono-energetic e⁻
- → No coincidence

How to look for $\mu^+ \rightarrow e^+ e^+ e^-$?

PAUL SCHERRER INSTITUT

Mu3e & MEG @

- → Common vertex
- → Time coincident

- → Mono-energetic e^+ and γ
- → back-back coincidence
- \rightarrow Mono-energetic e⁻
- → No coincidence

 \succ

 \succ

 \succ

 \succ

□ Step 1: Stop muons

- □ Step 1: Stop muons
- □ Step 2:Two layer vertex detector
- Step 3:A IT magnetic field and add 2 more Si pixel layers and start tracking (see our dedicated fast track fitter: https://arxiv.org/abs/1606.04990)

- □ Step 1: Stop muons
- □ Step 2:Two layer vertex detector
- Step 3:A IT magnetic field and add 2 more Si pixel layers and start tracking (see our dedicated fast track fitter: https://arxiv.org/abs/1606.04990)
- Step 4:Add Scintillating Fibre detectors to differentiate electrons and positrons

- □ Step 1: Stop muons
- □ Step 2:Two layer vertex detector
- Step 3:A IT magnetic field and add 2 more Si pixel layers and start tracking (see our dedicated fast track fitter: https://arxiv.org/abs/1606.04990)
- Step 4:Add Scintillating Fibre detectors to differentiate electrons and positrons
- Step 5:Add *recurl* tracking stations to get the optimal momentum resolution
- Step 6:Add Scintillating Tiles to get the optimal timing resolution

- □ Step 1: Stop muons
- □ Step 2:Two layer vertex detector
- Step 3:A IT magnetic field and add 2 more Si pixel layers and start tracking (see our dedicated fast track fitter: https://arxiv.org/abs/1606.04990)
- Step 4:Add Scintillating Fibre detectors to differentiate electrons and positrons
- Step 5:Add *recurl* tracking stations to get the optimal momentum resolution
- Step 6:Add Scintillating Tiles to get the optimal timing resolution

- □ Step 1: Stop muons
- □ Step 2:Two layer vertex detector
- Step 3:A IT magnetic field and add 2 more Si pixel layers and start tracking (see our dedicated fast track fitter: https://arxiv.org/abs/1606.04990)
- Step 4:Add Scintillating Fibre detectors to differentiate electrons and positrons
- Step 5:Add *recurl* tracking stations to get the optimal momentum resolution
- □ Step 6:Add Scintillating Tiles to get the optimal timing resolution

HV-MAPS

Lightweight <u>pixel tracker</u> build from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) called <u>MuPix</u>

A decade of detector development and test beams

HV-MAPS

Lightweight <u>pixel tracker</u> build from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) called <u>MuPix</u>

> 99.5 % efficient< I 5ns time resolutionThreshold/mask pixel by pixel

Col

HV-MAPS

Lightweight <u>pixel tracker</u> build from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) called <u>MuPix</u>

> 99.5 % efficient< I 5ns time resolutionThreshold/mask pixel by pixel

Mu3e detector

Mu3e detector

Mu3e detector

Timing detectors

- □ 12 ribbon 3 layer scintillating fibre detector surrounding the vertex detector
- □ Highly granular tile detector under the recurl stations

Reminder: the Mu3e event topology does not allow for a RO trigger, every $e^{+/-}$ track could potentially be part of a $\mu^+ \rightarrow e^+e^+e^-$ event. Only the kinematics of the combined final state positrons/electron gives us an event selection criteria.

Mu3e = lightweight and fast Michel electron tracker + high throughput online reconstruction & selection DAQ system

- → Common vertex
- → Time coincident
- $\rightarrow \sum_{\mu} E = m_{\mu}$
- → ∑p=0

Reminder: the Mu3e event topology does not allow for a RO trigger, every $e^{+/-}$ track could potentially be part of a $\mu^+ \rightarrow e^+e^+e^-$ event. Only the kinematics of the combined final state positrons/electron gives us an event selection criteria.

Mu3e = lightweight and fast Michel electron tracker + high throughput online reconstruction & selection DAQ system

- → Common vertex
- → Time coincident
- $\rightarrow \sum E = m_{\mu}$
- → ∑p=0

Readout system at scale: 3122 ASIC spitting out data at 1.25 Gb/s

Reminder: the Mu3e event topology does not allow for a RO trigger, every $e^{+/-}$ track could potentially be part of a $\mu^+ \rightarrow e^+e^+e^-$ event. Only the kinematics of the combined final state positrons/electron gives us an event selection criteria.

Mu3e = lightweight and fast Michel electron tracker + high throughput online reconstruction & selection DAQ system

Mu3e sensitivity

Based on full Monte Carlo simulation of the experiment, an analytical track fitter, and a lot of detector R&D, we claim that:

The <u>Mu3e Phase I</u> detector can achieve a $2 \cdot 10^{-15}$ SES on $\mu^+ \rightarrow e^+ e^+ e^-$

K. Amdt^{a,1}, H. Augustin^b, P. Baesso^c, N. Berger⁴, F. Berg^c, C. Betancourt⁴, D. Bortoletto^a, A. Bravar⁵, K. Briggl^{6,2}, D. vom Bruch^{4,3}, A. Buonaura⁺, F. Cadoux⁸, C. Chavez Barajas^b, U. Chan¹, K. Clark⁵, B. Cocke¹, S. Cocke¹, S. Cocke¹, S. Cocke¹, S. Dittrajas^b,

Building Mu₃e

First we need	muons, a	beamline	and a	<u>magnet</u>	\checkmark

Beam	Comm	ission	ing	Comparison	
			0		

Rates	Collimator	QSM41	Mu3e
2021	2.11 10 ⁸ μ^+/s	$1.2 \ 10^8 \ \mu^+/s$	4.76 $10^7 \ \mu^+/s$
2022	2.47 $10^8 \ \mu^+/s$	1.8 $10^8 \ \mu^+/s$	7.46 $10^7 \ \mu^+/s$

Table: All rates are normalised to 2.4 mA.

- 2.3 mA 600 MeV proton beam from HIPA at PSI
- $10^8\,\mu^{\text{+}}\!/\text{s}$ (DC) at the πE5 area
- Stopped on a thin Mylar target

Vertex, Scintillating Fibre & Tile detector under construction ...

- ... but first a demonstrator/prototype
- □ Vertex detector module with MuPIX10 chips
- SciFi Module
- □ Crate with Front-End Boards
- Detector Cage
- □ 2g/s Helium cooling
- **u** ...

Vertex, Scintillating Fibre & Tile detector under construction ...

- □ Vertex detector module with MuPIX10 chips
- SciFi Module
- Crate with Front-End Boards
- Detector Cage
- □ 2g/s Helium cooling
- ...

A lot of operational experience

Beam in 2021

Cosmics in 2022

Vertex, Scintillating Fibre & Tile detector under construction ...

Vertex, Scintillating Fibre & Tile detector under construction ...

37

Vertex, Scintillating Fibre & Tile detector under construction ...

Tololololo

Zone outside of the tracker is active detector area \rightarrow All services run along the beam pipe

Zone outside of the tracker is active detector area \rightarrow All services run along the beam pipe

Mu3e detector services

- □ Micro-twisted pair cable for each ASIC (LVDS)
- □ HV & LV channel for each detector module
- □ -15 °C liquid cooling for the MuTRIG ASIC and SiPMs
- Up to 5kW power to and from Frontend Boards and DC-DC
- Up to 5kW from and to the pixel detector

And a lot of cables

Zone outside of the tracker is active detector area \rightarrow All services run along the beam pipe

Mu3e detector services

- □ Micro-twisted pair cable for each ASIC (LVDS)
- □ HV & LV channel for each detector module
- □ -15 °C liquid cooling for the MuTRIG ASIC and SiPMs
- Up to 5kW power to and from Frontend Boards and DC-DC

Up to 5kW from and to the pixel detector

- □ 200-400 mW/cm²
- □ No pipes, no liquids, ...
- Helium has almost the same volumetric heat capacity as air!
 - \Box 50 g/s gaseous helium cooling system for the Mu3e pixel detector

Compact turbo compressors with gas bearing for the circulation and compression of Helium.

- High throughput
- Low compression ratio

Entire System optimized for low pressure drops 41

=

+

Vertex detector

Successful cooling of a pixel tracker using gaseous helium arXiv:2301.13813

=

+

Vertex detector

Successful cooling of a pixel tracker using gaseous helium arXiv:2301.13813

47

48

Mu3e phase I

Data taking days

When you are at PSI, pay us a visit!

Mu3e phase I

Data taking days

MuPix11 - The Mu3e Pixel Track Chip

- Not scheduled
- **③** 20m
- Conference 1-3 (Heidelberg University, Physics Institute)

Speaker

Lavid Maximilian Immig (Physikalisches Insti...

The Mu3e pixel detector

- I Not scheduled
- **③** 20m
- ♀ Conference 1-3 (Heidelberg University, Physics Institute)

Speaker

💄 Thomas Theodor Rudzki (Physikalisches Insti...

The Camera Alignment System for the Mu3e Experiment

- Not scheduled
- 🕚 20m
- ♥ Conference 1-3 (Heidelberg University, Physics Institute)

Speaker

L Sophie Gagneur (Johannes Gutenber...

Mu3e phase II

Mu3e Phase I experiment:

- $\Box \qquad \text{Run at the } \pi \text{E5 CMBL}$
- $\Box \quad \text{Reach } 2 \times 10^{-15} \text{ S.E.S in } 400 \text{ days}$

Phase I, so there is a phase II?

- □ Reach 10⁻¹⁶ S.E.S. on $\mu^+ \rightarrow e^+ e^+ e^-$
- □ Can not run at the existing beamline, Need 10⁹ µ⁺/s on target
 → HIMB

Mu3e one of the main physics cases for this next generation facility.

Science Case for the new High-Intensity Muon Beams HIMB at PSI Edited by A. Knecht, F. Meier Aeschbacher, T. Prokscha, S. Ritt, A. Signer

arXiv:2111.05788

- + https://www.psi.ch/en/impact
- + Thursday afternoon at this conference

Repace target M with a capture solenoid configuration

Mu³e phase II

 \rightarrow Larger (target)

- As does the combinatorics of track finding
 - \rightarrow Smarter (online filtering)
- Large phase space of the beam

- ➡ Most of the Phase I detector needs a redesign
- → We need new, fast the active pixel detector
 - SiGe CMOS?

Mu3e phase II

Other Exotic Physics with Mu3e Familons

- Search for $\mu^+
 ightarrow e^+ X^0$ decays
- Ex: Familon

(Goldstone boson from spontaneously broken flavour symmetry, Wilczek, PRL 49 (1982) 1549)

- Challenge: single-e events are not saved
- Histogramming on filter farm

Table 22.1

Efficiency of the various reconstruction and analysis steps.

Step			Step effici	ency Tot	al efficiency	
Muon stops			100%	100)%	
Geometrical acceptance	e, short track	S	38.1%	38.	1%	
Geometrical acceptance	e, long tracks	5	68.0%	25.	9%	
Short track reconstruct	ion		89.5%	34.	1%	
Long track reconstruct	ion ^a		67.2%	17.	4%	
Parameter	Symbol	Air	Helium	Unit	Condition	Ref
Density	p	1.205	0.1663	kg/m ³	20 °C, 1013 mb	ar [pdg]
Specific heat capacity	C _p	1.006	5.193	kJ/(kg K)	25 °C, 1 bar	[CRCHandbookChemPhys]
Volumetric heat capacity	1	1.212	0.864	$kJ/(m^3 K)$	25 °C, 1 bar	calc
Dynamic viscosity	η	18.2	18.6	μPas		[wikipediaVisko]
Mean free path	λ	60	174	nm		[wikipediaVisko]
Speed of sound	С	331	981	m/s	0 ° C, 1 bar	[CRCHandbookChemPhys]
Radiation length	X_0	36.6	94.3	g/cm ²		[pdg]
22		304	5670	m	20 °C, 1013 mb	ar calc
line).						
Layer		1	2	3	4	
number of modules		2	2	6	7	
number of ladders		8	10	24	28	
number of MuPix sensors	s per ladder	6	6	17	18	
instrumented length [mn	1]	124.7	124.7	351.9	372.6	
minimum radius [mm]		23.3	29.8	73.9	86.3	

Parameter	Symbol	Air	Helium	Unit	Condition	Ref
Density	م	1.205	0.1663	kg/m ³	20 °C, 1013 mbar	[pdg]
Specific heat capacity	C_p	1.006	5.193	kJ/(kg K)	25 °C, 1 bar	[CRCHandbookChemPhys]
Volumetric heat capacity	1	1.212	0.864	$kJ/(m^3 K)$	25 °C, 1 bar	calc
Dynamic viscosity	η	18.2	18.6	μPas		[wikipediaVisko]
Mean free path	à	60	174	nm		[wikipediaVisko]
Speed of sound	С	331	981	m/s	0 ° C, 1 bar	[CRCHandbookChemPhys]
Radiation length	X_0	36.6	94.3	g/cm ²		[pdg]
		304	5670	m	20 °C, 1013 mbar	calc

High Rate & Continuous Readout

MuPix series is the first monolithic pixel sensor with continuous sampling and readout!

