CLFV at a TeV scale muon-ion collider Charged Lepton Flavor Violation 2023 June 22, 2023

D. Acosta, E. Barberis, P. Boyella, N. Hurley, W. Li, O. M. Colin, Y. Wang, D. Wood, X. Zuo

In a nutshell

xunwu.zuo@cern.ch

Any new physics inducing $\mu \leftrightarrow e$ can be directly probed with muon-ion collisions.

Direct probe of $\mu \leftrightarrow \tau$, especially with NP modifications at high energy

Sizable production of Z, H, B_s , potential production of Z' and leptoquarks

All in one experiment.

Outline

- MulC concept
- Physics potential overview
- Case studies
 - $e \leftrightarrow \tau$ at EIC
 - $e \leftrightarrow \mu, \tau \text{ at LHeC}$
 - HNL at LHeC
 - Z' at MulC
 - Leptoquark at MulC

MulC concept

MulC - inspirations

EIC at BNL

• Approved, data-taking in 2030s

xunwu.zuo@cern.ch

LHeC at CERN

- $\sqrt{s} \sim 1.2$ TeV
- $\mathscr{L} \sim 1000 \text{ fb}^{-1}$
- Proposed to be concurrent with HL-LHC

MulC - proposal

Upgrade (alternative) of EIC (LHeC)

- For MuIC, $\sqrt{s} \sim 1$ TeV
- For LHmuC, $\sqrt{s} \sim 6.5$ TeV

Broad science program

- PDF determination
- QCD precision measurements
- EWK, Higgs physics
- BSM searches (in particular, CLFV)

- A path toward muon accelerator technology
- Complementary and concurrent with mega-projects in HEP

MulC proposals:

MulC - dataset

Staging of MulC:

- Start with a muon beam with relatively low energy and low luminosity
- Early data-taking in parallel with accelerator R&D
- Stable running of MulC at $\sqrt{s} \sim 1$ TeV as a realistic scenario.

In the realistic scenario, expect **400 fb**⁻¹ of data for 10 years operation 10³⁵ 10³⁴ 10³⁴ 10³³ 10³²

		MulC		MulC2	LHmuC
E _p (TeV)		0.275		0.96	7
E _μ (TeV)	0.1	0.5	0.96	0.96	1.5
$\sqrt{s_{\mu p}}$ (TeV)	0.33	0.74	1.0	1.92	6.5
L _{int} (x10 ³³ cm ⁻² s ⁻¹)	0.07	2.1	4.7	4.7	2.8

Detector concept

Tracking and PID

 $-4 < \eta < 2.4$

PID is crucial for QCD and nuclear physics

Calorimeter

 $-5 < \eta < 2.4$

Wide coverage to retain sensitivity to missing energy

 $-7 < \eta < 0$

Important to detect scattered muons at high η

xunwu.zuo@cern.ch

Tungsten nozzle

To clean electrons from the muon beam

(sacrifice some access to proton remnants)

Roman pot

 $5 < \eta < 8$

Landscape of physics potential

Muon-ion collision

Physics descriptions:

- *s* squared center-of-mass energy
- Q^2 squared four-momentum transfer
- *x* Bjorken scaling (parton momentum fraction)
- y Bjorken scaling (lepton momentum fraction)

$$s = 4 |\mathbf{k}| |\mathbf{P}|$$
$$Q^{2} = -\mathbf{q}^{2} = sxy$$
$$x = \frac{Q^{2}}{2\mathbf{P} \cdot \mathbf{q}}, \quad y = \frac{\mathbf{P} \cdot \mathbf{q}}{\mathbf{P} \cdot \mathbf{k}}$$

Physics landscape

The MulC dataset

- Extends coverage of Q^2 and x by an order of magnitude
- Early datasets already good for nuclear physics and QCD measurements
- Opportunities open for EW physics and BSM searches as \sqrt{s} and lumi increase

In view of CLFV

- Low Q^2 light physics with $\mu \leftrightarrow e, \tau$
- Mid Q^2 LFV decays of B_s, Z, H
- High Q^2 Production of Z', LQ, etc.

Inclusive cross sections

- Need very high luminosity to reach extreme Q^2

xunwu.zuo@cern.ch

• Abundant cross sections for DIS at moderate Q^2 (including EW scale)

Event kinematics example

Consider a high Q^2 process (using Higgs production) as an example)

Implication for CLFV searches:

- Scattered lepton is forward, even for high Q^2 processes — beam backgrounds are rather collimated
- If heavy particles are produced, their decay products are well within the central acceptance
- Leptons originating from the hadron side (e.g. t-channel) LQ exchange) do not mix with scattered leptons.

Selected case studies with references from EIC and LHeC

$e \leftrightarrow \tau \text{ at EIC}$

LFV τ decay searches	Probe of $ep \rightarrow a$
Tag each decay mode individually	Measure the tail all BSM modif
Some modes are difficult to reconstruct	Tag taus with understood de

Detailed EFT description for τ productions and decays at EI

Example table shows $\sigma(ep \to \tau X)$ with modifications from $Z'(c_{L\varphi})$ or four-fermion interactions $((C_{LQ})_{qq})$.

JHEP 03 (2021) 256

	\sqrt{S}	$63{ m GeV}$	$100{ m GeV}$	$141{ m GeV}$	\sqrt{S}	$63{ m GeV}$	$100{ m GeV}$	
5	$ au_L$	$\sigma_1 ~({\rm pb})$	$\sigma_2 ~({\rm pb})$	$\sigma_3 ~({\rm pb})$	$ au_R$	$\sigma_1 ~({\rm pb})$	$\sigma_2 ~({\rm pb})$	
n	$c_{Larphi}^{(1)}+c_{Larphi}^{(3)}$	1.86(4)	4.2(1)	7.6(2)	c_{earphi}	1.30(3)	3.1(1)	
	$ au_L$	$\sigma_1 ~({\rm pb})$	$\sigma_2 ~({\rm pb})$	$\sigma_3 ~({\rm pb})$	$ au_L$	$\sigma_1 ~({\rm pb})$	$\sigma_2~({ m pb})$	
	$(C_{LQ,U})_{uu}$	8.0(4)	20(1)	38(2)	$(C_{Lu})_{uu}$	3.9(2)	9.5(4)	
	$(C_{LQ,U})_{cu}$	7.8(4)	20(1)	37(2)	$(C_{Lu})_{cu}$	3.1(3)	7.8(7)	
	$(C_{LQ,U})_{uc}$	1.0(2)	2.5(6)	5.2(1.1)	$(C_{Lu})_{uc}$	1.4(2)	3.7(4)	
	$(C_{LQ,U})_{cc}$	0.7(3)	1.9(7)	4.0(1.4)	$(C_{Lu})_{cc}$	0.7(3)	1.9(7)	
	$(C_{LQ,D})_{dd}$	4.4(2)	10.8(4)	21(1)	$(C_{Ld})_{dd}$	2.8(1)	7.1(3)	
	$(C_{LQ,D})_{sd}$	3.9(2)	9.7(4)	19(1)	$(C_{Ld})_{sd}$	1.6(2)	3.9(6)	
	$(C_{LQ,D})_{bd}$	3.9(1)	9.5(3)	19(1)	$(C_{Ld})_{bd}$	1.4(1)	3.4(1)	
	$(C_{LQ,D})_{ds}$	0.8(3)	2.0(8)	4.1(1.5)	$(C_{Ld})_{ds}$	1.6(2)	4.1(4)	
	$(C_{LQ,D})_{ss}$	0.35(31)	1.0(8)	2.0(1.7)	$(C_{Ld})_{ss}$	0.33(27)	0.9(7)	
	$(C_{LQ,D})_{bs}$	0.28(26)	0.8(7)	1.7(1.4)	$(C_{Ld})_{bs}$	0.14(10)	0.5(3)	
	$(C_{LQ,D})_{db}$	0.57(7)	1.6(2)	3.2(3)	$(C_{Ld})_{db}$	1.6(1)	4.0(2)	
	$(C_{LQ,D})_{sb}$	0.13(7)	0.4(2)	1.1(5)	$(C_{Ld})_{sb}$	0.26(19)	0.7(5)	
С	$(C_{LQ,D})_{bb}$	0.07(4)	0.3(2)	0.8(2)	$(C_{Ld})_{bb}$	0.07(6)	0.3(1)	
	$ au_R$	$\sigma_1 ~({\rm pb})$	$\sigma_2 ~({\rm pb})$	$\sigma_3 ~({\rm pb})$	$ au_R$	$\sigma_1 ~({\rm pb})$	$\sigma_2 ~({\rm pb})$	
	$(C_{Qe})_{dd}$	7.5(3)	19(1)	37(2)	$(C_{Qe})_{ds}$	5.7(5)	14(1)	
	$(C_{Qe})_{sd}$	4.1(2)	10.3(5)	21(1)	$(C_{Qe})_{ss}$	2.3(2)	5.8(5)	
	$(C_{Qe})_{bd}$	1.4(6)	3.7(1)	7.4(3)	$(C_{Qe})_{bs}$	0.20(11)	0.6(3)	
	$(C_{Qe})_{db}$	1.7(1)	4.3(3)	8.7(5)	$(C_{Qe})_{sb}$	0.32(19)	0.9(5)	
	$(C_{Qe})_{bb}$	0.07(6)	0.3(1)	0.8(5)				

τX production

otal size of ications

wellecay modes

lecays at EIC

$e \leftrightarrow \tau \text{ at EIC}$

Full simulation study on the reconstruction efficiency of $e \rightarrow \tau$ events

- Much cleaner selection with on 3-prong decays
- Consider single modification from LQ, limits on interaction strength from $ep \rightarrow \tau X$ comparable to the BABAR $\tau \rightarrow e\gamma$ result

arXiv: 2207.10261

$e \rightarrow \mu, \tau \text{ at LHeC}$

- Search for direct FCNC mediated by Z'
- Tag outgoing tau or mu
- $e \rightarrow \mu$ sensitivity not comparable with muon conversion results.
- Competitive results in $e \rightarrow \tau$ conversion

Production of HNL at LHeC

- Consider HNL in "Symmetry Protected Seesaw Scenario" model, assuming mixing angles $|\theta_e|^2 = |\theta_\mu|^2$, $|\theta_\tau|^2 = 0$
- Prompt search for $\mu + 3j$ final state, with dijet compatible with W mass
- Also search for displaced $N \rightarrow$ visible with reconstructable vertex

Remarkable exclusion sensitivities: potential "golden channel" for direct HNL search

Z' at MulC

Consider model discussed in <u>Phys. Rev. D 97.075035</u>

$$L \supset Z^{\prime \mu} [g_{\mu} \bar{\mu} \gamma^{\mu} \mu + g_{\mu} \bar{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{\mu} + g_{b} \sum_{q=t,b} \bar{q} \gamma^{\mu} P_{L} q + (q) \nabla_{\mu} \nabla_$$

- Introducing coupling to muons and between s, b quarks to explain anomalies in B meson decays.
- In which, $g_b \delta_{bs}$ is the non-flavor conserving component, $g_b \delta_{bs} g_\mu (100 \text{ GeV}/m_{Z'})^2 \sim 1.3 \times 10^{-5}$

 The flavor conserving part has significant interference with the SM neutral current process

 $g_b \delta_{bs} \bar{s} \gamma^{\mu} P_L b + h.c.$

Z'pseudo-analysis

Scan the reconstructed Q^2 with simple cut-and -count estimates

b-tagging and mis-tagging efficiencies for b, c, q(u, d, s)jets are assumed at 70%, 10%, 1%

 Full simulation planned to understand requirements for detectors

Z' Projected Limits

Exclusion phase-space complementary to current B results and neutrino experiments

Also need to compete with direct Z' searches at HL-LHC.

 Comparing to HL-LHC projection in Phys. Rev. D 97, 075035, need about 120 fb⁻¹ at LHmuC

More studies on different channels and interpretations planned.

LHmuC

Leptoquark signatures at MulC

Signature related to B-anomalies

Note: all cross section results assume Yukawa coupling strength of LQ - lq at 0.1

xunwu.zuo@cern.ch

Flavor changing signature involving τ Flavor changing signature involving top

(Ongoing) leptoquark at MulC

- Consider leptoquark model with coupling between muons and *s*, *b* quarks ($y_{3,22}^{LL} = y_{3,32}^{LL} = 0.1$)
- Motivated by anomalies in B decays and muon (g 2)
- At the moment, only studying the interference with the SM neutral current and the flavor conserving part in LQ

 $L_{S_3} \supset y_{3ij}^{LL} \bar{Q}_L^{Ci,a} \epsilon^{ab} (\sigma^k S_3^k)^{bc} L_L^{j,c} + hc$

Summary

MulC is a versatile machine with unique specialities

- TeV scale collisions with reach for extreme high Q^2 and low x
- Rich physics program spanning a wide phase-space

Exciting opportunities to probe CLFV

- Unique production channels
- High sensitivity to certain models

Also, synergy with different HEP areas

- Muon accelerator technology toward muon colliders
- Collaboration of nuclear and particle physics communities
- Can run concurrently with other major projects like FCC/CEPC, or muon colliders
- For CLFV: complementary physics program to low energy CLFV experiments

Backups

Note: - High energy physics - Nuclear physics xunwu.zuo@cern.ch

The muon-ion option:

- Rich, and some unique, physics programs
- Can be concurrent with other mega projects

W, Z production

Many different modes for W, Z production

For MuIC at
$$\sqrt{s} \sim 1$$
 TeV

•
$$\sigma_{W^{\pm}} = 19.4 \text{ pb}$$

• $\sigma_Z = 3.6 \, \text{pb}$

With 400 fb⁻¹ data

- expect 8M W, 1.5M Z
- All are EWK production (no DY, no QCD-induced backgrounds)
- Clean and sufficient dataset for precision measurement on (SM and anomalous) triple gauge coupling.

xunwu.zuo@cern.ch

Example diagrams for vector boson production

EW measurements

- Most final objects within the acceptance
- Little overlap between the scattered muon and the lepton(s) from V boson decay.

xunwu.zuo@cern.ch

Similar performance expected at MulC and LHeC

LHeC report

$WW\gamma$ coupling at LHeC assuming 1 ab⁻¹

Higgs production

Mainly produced via VBF process, with both charged current (CC) and neutral current (NC) exchanges

For MuIC at $\sqrt{s} \sim 1 \text{ TeV}$

- $\sigma_{CC} = 64.5 \, \text{fb}$
- $\sigma_{NC} = 11.6 \text{ fb}$
- Expect 30k Higgs with 400 fb⁻¹ at MuIC
- Very clean environment

Note: tH production also possible, but much less

- Negligible ($\sigma_{tH} \ll 1$ fb) at MuIC ($\sqrt{s} \sim 1$ TeV)
- Visible ($\sigma_{tH} > 10$ fb) at LHmuC ($\sqrt{s} \sim 7$ TeV)

xunwu.zuo@cern.ch

Higgs event kinematics

xunwu.zuo@cern.ch

At MuIC, all final objects within the acceptance

- Decay products and struck quarks in central detector (in contrast to LHeC)
- Forward muon detector is essential

$H \rightarrow b\bar{b}$ case study

- Selection: Target CC VBF-H signal over NC DIS bb background
 - 2 b-tagged jets + 1 light jet
 - $p_T(b\bar{b}) > 20 \text{ GeV}$
 - Muon veto, $E_T^{miss} > 30 \text{ GeV}$
- Expected statistical precision ~ 3%
 - Comparable with HL-LHC expectation
 - Consistent with LHeC, which has a greater cross section but less acceptance than MuIC
- Expect 10X more signal at LHmuC

MadGraph LO samples + Delphes simulation

top quark production

Cross section grows fast as Q^2 becomes less suppressed

MuIC
$$\sqrt{s} \sim 1$$
 TeV
MuIC2 $\sqrt{s} \sim 2$ TeV
LHmuC $\sqrt{s} \sim 6.5$

MuIC
$$\sqrt{s} \sim 1$$
 TeV
MuIC2 $\sqrt{s} \sim 2$ TeV
LHmuC $\sqrt{s} \sim 6.5$

xunwu.zuo@cern.ch

	0.95 pb
/	5.44 pb
TeV	48.1 pb

Distinct final states in $\mu - p$ environment

- Direct measurement of $|V_{tb}|$
- Potential to probe $|V_{td}|$ and $|V_{ts}|$ as well

,	0.014 pb
/	0.22 pb
TeV	4.62 pb

• With enough data, direct measurement on $t\bar{t}\gamma$ and $t\bar{t}Z$ couplings

What about positive *t* quark? — FCNC

Single *t* quark production in $\mu^- p$ collisions only possible via FCNC *tq* γ , *tq*Z, and *tq*H couplings

- Extremely suppressed in SM
- Tag scattered μ^- and $t \to W^+(\ell^+\nu)b$ decay
- Null test with distinct final states

From LHeC report, expectation at 400 fb⁻¹

- $BR(t \rightarrow q\gamma) < 2 \times 10^{-5}$ at 95% CL
- $BR(t \to qZ) < 1 \times 10^{-4}$ at 95% CL

Same order as current LHC limits

- Probe via production vs decay
- Much more sensitive at LHmuC

xunwu.zuo@cern.ch

LHCtopWG

