

#### HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

www.kit.edu

#### A Low-Latency Feedback System for Control of Horizontal Betatron Oscillations of an Electron Beam

Luca Scomparin, Edmund Blomley, Michele Caselle, Andrea Santamaria Garcia, Johannes Steinmann, Andreas Kopmann, Erik Bruendermann, Anke-Susanne Mueller, Marc Weber



SEI Tagung 2023

#### Karlsruhe Research Accelerator (KARA)



- Synchrotron light source with insertion devices
- Electron storage ring
- 2.5 GeV maximum energy @ 150 mA
- 110 m circumference
- RF frequency of ~500 MHz with 184 buckets
- Bunch length in the few ps range

Detector and DAQ need 500M Events per second and ps resolution



#### **Control of Longitudinal Beam dynamics at KARA**



Interaction of beam with emitted radiation creates **instabilities** making **power fluctuate** (micro-bunching instability)  $\rightarrow$  **limits user operation** 



Control loop to limit this effect, <u>but</u> control problem not solved  $\rightarrow$  can we used Reinforcement Learning methods? In RL an <u>agent</u> learns to maximise the cumulative <u>reward</u> by interacting with an <u>environment</u> Yes, but inference must be at dynamics timescale O(tens of  $\mu$ s)

Specialized hardware is needed

### **Xilinx Versal ACAPs**

#### Adaptive Compute Acceleration Platform (ACAP)



#### FPGA



Which combines:

- ARM processors (Scalar Engines)
- FPGA (Adaptable Engines)
- AI Engines
- DSP Engines
- Advance interfaces

All linked by high bandwidth Network on a Chip (NoC)

Allows full customization of the dataflow depending on the application

VCK190 Evaluation Kit

#### Why Versal: first benchmarks

- 4 layer, 64 neuron fully connected neural network
- 32 bit floating point computation
- AXI4-Stream input/output
- fully reconfigurable at runtime, easy to deploy
- limited hardware requirements (2% of AIE array)
- tested on hardware

#### Preliminary result (no optimization)

Latency measured  $\sim 4.5 \,\mu s$ , 4 times better than previous Ultrascale+ family FPGA (on 8 bit integers)

Input: plioIn4ataIn.txt) buf0

Stream 3 buffers

3 buffers





W. Wang, M. Caselle, et al IEEE TNS, https://doi.org/10.1109/TNS.2021.3084515 (2021)

Luca Scomparin -

#### KINGFISHER



Intended as a general platform for fast inference for scientific applications (e.g. autonomous accelerator systems, ...)

Idea:

Create general platform and hardware interfacing with beam diagnostic (KALYPSO, KAPTURE, ...) and action control (interfacing with accelerator control system) providing standard way of accessing data and provide feedback.

#### Goal:

Do the system level part (interfacing to the world) once, let user program in "higher level" languages (C++, Python). Easier access to non- FPGA experts!

#### **KINGFISHER:** the structure





#### KAPTURE



Sampling of four points, local sampling rate over 300 Gsps. Selectable 3 ps delay for pulse shape reconstruction





38 Gbps data rate per card

#### **KAPTURE and Versal**



Interconnection of Versal and KAPTURE systems requires:

- transfer data on particle accelerator scale (~100 m);
- latency as low as possible;
- high data throughput;

Aurora 64b/66b protocol from Xilinx



# 10 Gbps links

Four parallel channels in full duplex

Voltage offset [arb]

Low Bit Error Rate (< 10<sup>-12</sup>)

Low latency (~ 300 ns)

Both copper and fiber physical layer, using Samtec FireFly connectors



10







#### **EPICS IOC**



EPICS Input/Output Controller running using caproto on the ARM processor

Controls parameters and data acquisition

Fully integrated in KARA control system

Operator control panel in Control System Studio

|                                                                                                                                                            | CS-Studio – 🗆 😣                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>F</u> ile Edit Se <u>a</u> rch <u>C</u> S-Studio Window Hel                                                                                             | p                                                                                                                                                     |
| 🖆 📰 📓 🕶 🐐 🎾 🥂 🔛 🛷 🕶                                                                                                                                        | 😰 🖾 OPI Runtime                                                                                                                                       |
| ⊠Kingfisher ¤                                                                                                                                              | @ @ 100% 🔽 \$ = \$ = 🗖                                                                                                                                |
| KINGFISHER                                                                                                                                                 |                                                                                                                                                       |
| AI Engine State off waiting_for_user waiting_for_coeff running                                                                                             | Feedback control<br>Feedback enabled •<br>Stop Feedback 1                                                                                             |
| Settings         FIR Gain       0         ADC Channel       0         Bunch number       0         Enable MAX mode       0         Enable ABS mode       0 | Acquisition control<br>Revolutions to acquire 1000<br>Run acquisition •<br>Internal source<br>Amplitude (full scale) • 0.0000<br>Frequency (Hz) 10000 |
| - luca                                                                                                                                                     | Always remember to enable data transfer on KAPTURE side                                                                                               |

#### **Preliminary horizontal feedback test**



Goal is to control horizontal betatron oscillations

Good test as their apparent frequency is around 700 kHz

Lab tests showed a total latency of 2.4  $\mu s$ 



#### **Readout issues**



First BPM signal readout attempt failed

Strong noise dominated the signal

Noise due to coupled bunch instabilities: each bunch produces wakefield, that kicks itself/other bunches



#### **Readout issues: solution**

Possible solution is to "fit" the peak using the four points.

An even easier one is to use a single bunch in order to reduce the wake field interactions

This last approach was successful





#### Feedback tests: injection kicker



Injection kicker moves the beam horizontally: it the oscillates at the betatron frequency and is damped by synchrotron radiation

Experimentally demonstrated that the feeback system can effectively improve this behavior



#### Feedback tests: the notch



Noise of the BPM and front-end input gets propagated, amplified by the beam and then reduces the input noise at betatron frequency

Works just at the betatron resonance

Good indication feedback is working





#### Conclusions



Complete feedback system tested Feedback system was working as expected

Outlook: Soon reinforcement learning tests

Thanks to this tests, new Low Level RF feedback input to be installed soon @ KARA

### Thank you for your attention



# **Backup slides**

### **Action choice**

Two different possible longitudinal kicks: 1) Bunch-By-Bunch

feedback cavity 2) Low Level RF system

(1) can be performed separately on each bunch, but not very strong

(2) extremely strong, but acts on all bunches

job!



# Synchrotron radiation 101



Accelerated charges emit radiation

In synchrotron charged particles move in a circle  $\rightarrow$  centripetal acceleration  $\rightarrow$  synchrotron radiation

Very bright, short pulses, extremely broadband  $\rightarrow$  interesting for user In some cases coherent



mage source nttp://pd.cnem.uci.ac.uk/pdnn/inst2/prop.ntm

# **Sampling signals**



Signal from synchrotron radiation detector:

- bunch every 2 ns
- would like picosecond granularity, would mean THz sampling rate!

| Choose F | Parameters All Reset Table | e 🕞 Maximize Filters 👬         | Sort by Newest | Save to myAr       | alog 🕀 Download          | d to Excel 🁥 Shai  | re 🔽 🛛 Quick Tip         | s Send Feedback             |                           |
|----------|----------------------------|--------------------------------|----------------|--------------------|--------------------------|--------------------|--------------------------|-----------------------------|---------------------------|
| ₿ *      | Part Number                | Analog.com Inventory           | Channels       | Resolution<br>bits | Sample Rate<br>max   SPS | ADC SNR in<br>dBFS | INL in LSB<br>typ   LSBs | Vin Range       typ   V p-p | Data Output Interface 🛛 🛔 |
|          | Filter Parts               |                                | 1 - 16         | 6 - 16             | 1<br>7.5M - 10.250       | 37 - 84.1          | 0.1 - 35                 | 0.1 - 5                     |                           |
| Compare  |                            |                                |                |                    |                          |                    |                          |                             | 22 Values Selected >      |
|          | 517 parts                  | HIDE                           | HIDE           | HIDE               | HIDE                     | HIDE               | HIDE                     | HIDE                        | HIDE                      |
|          | AD9213                     | 1                              | 1              | 12                 | 10.25G                   | 57.5               | 2.4                      | 1.4                         | JESD204B                  |
|          | AD9213S                    |                                | 1              | 12                 | 10.25G                   | 57.5               | 2.4                      | 1.4                         | JESD204B                  |
|          | AD9207                     | Check Distributor<br>Inventory | 2              | 12                 | 6G                       | 53.4               | 1.38                     | 1.475                       | JESD204B, JESD204C        |

Standard High Speed A/D Converters

#### But they don't sell it yet!

# **AI Engine Array**







# **AI Engine Array**



**Multiplications** per clock cycle

Array of AI Engine Tiles, separate block tightly connected to FPGA

In our board 400 tiles

Each tile is composed of:

- Vector Processing Unit ٠
- 32 kB of memory ٠
- Several interfaces to other tiles ٠

Multiple operations per clock cycle:

- 2 vector load •
- 1 vector write ٠
- several multiply and accumulate ٠

400 tiles x 8 FP multiplications x 0.5 GHz up to 1.6 Tera FP operations per second !!!

|     | X Operand | Z Operand  | Output        | Number of MACs |  |
|-----|-----------|------------|---------------|----------------|--|
| 8 r | real      | 8 real     | 48 real       | 128            |  |
| 16  | real      | 8 real     | 48 real       | 64             |  |
| 16  | real      | 16 real    | 48 real       | 32             |  |
| 16  | real      | 16 complex | 48 complex    | 16             |  |
| 16  | complex   | 16 real    | 48 complex    | 16             |  |
| 16  | complex   | 16 complex | 48 complex    | 8              |  |
| 16  | real      | 32 real    | 48/80 real    | 16             |  |
| 16  | real      | 32 complex | 48/80 complex | 8              |  |
| 16  | complex   | 32 real    | 48/80 complex | 8              |  |
| 16  | complex   | 32 complex | 48/80 complex | 4              |  |
| 32  | real      | 16 real    | 48/80 real    | 16             |  |
| 32  | real      | 16 complex | 48/80 complex | 8              |  |
| 32  | complex   | 16 real    | 48/80 complex | 8              |  |
| 32  | complex   | 16 complex | 48/80 complex | 4              |  |
| 32  | real      | 32 real    | 80 real       | 8              |  |
| 32  | real      | 32 complex | 80 complex    | 4              |  |
| 32  | complex   | 32 real    | 80 complex    | 4              |  |
| 32  | complex   | 32 complex | 80 complex    | 2              |  |
| 32  | SPFP      | 32 SPFP    | 32 SPFP       | 8              |  |



#### **AI Engine Programming**

User defined tile task and how they are connected



Programming in C++ as an Adaptive Data Flow Graph (ADF)

Capabilities:

- runtime definition of parameters (interesting for Reinforcement Learning applications)
- addition of kernels on FPGA (interesting for Convolutional Neural Networks)
- much more

# Versal programming: a job for two people



#### Use of Xilinx Acceleration Kernel Flow



Use of C/C++, in some case Python