



#### Development of a High-rate HV-CMOS Sensor for Real-time Monitoring of a Medical Ion-beam F. Ehrler, M. Balzer, A. Dierlamm, R. Koppenhöfer, R. Lahmann, S. Maier, H. Mateos,

M. Pittermann, I. Perić, R. Schimassek, B. Topko, E. Trifonova, A. Weber



KIT – The Research University in the Helmholtz Association

#### www.kit.edu

# **Motivation: Tumor Treatment**



- In Germany, approximately 500 000 people are diagnosed with tumor or cancer every year
- Many diagnoses are not a death sentence anymore
- Some still are
- Treatment combines usually three approaches:
  - Resection
  - Chemotherapy
  - Radiotherapy
- A good prognosis depends primarily on an early diagnosis (do your medical checkups!). But also on the continuous optimization of the treatment.

# **Radiotherapy – External Beam Irradiation**



- Destruction of tumor cells by ionizing radiation
- Healthy tissue should be spared
- Most common is photon irradiation
- Irradiation using heavy, ionized particles is different:
  - Bragg peak: irradiation in front of sensitive tissue
  - Lower dose to healthy tissue
  - Tumors are irradiated by scanning voxels:
    x, y, energy.



Source: Royce et al. "Proton Therapy for Prostate Cancer: A Review of the Rationale, Evidence and Current State." Urologic Oncology: Seminars and Original Investigations, 2019



# **Challenges of Ion Irradiation**



- Large accelerator needed
- Spatial aiming
  - Depth (via energy) is defined by the accelerator and filters
  - Position is defined by deflection and focusing magnets and has to be closely monitored
- Dose monitoring by ionization chambers
- Fast feedback and interrupt if
  - maximum dose is reached or
  - malfunction is detected

Magnetic Resonance Imaging (MRI) during irradiation is not yet possible

# Heidelberg Ion beam Therapy center (HIT)



- Started 2009
- Linac and synchrotron
- Energy range 7 430 MeV/u in 255 steps
- Protons and Carbon ions
- Intensity up to 2 x 10<sup>9</sup> per second
- 2 horizontal treatment rooms
- 1 Gantry treatment room
- 1 additional beam room for quality assurance and experiments





Source: HIT Betriebs GmbH

# State of the Art: Multi-wire Chambers



Sensitive to magnetic field Only projection, no beam shape Not suitable for low signal per area

Our goal is to offer a superior alternative



Multiwire chambers (MWICs) for position measurement



window

Ionization chambers (ICs) for dose measurement

# Differences to Pixel Detectors in High Energy Physics



- Higher particle rate (> 60 MHz/cm<sup>2</sup>)
- Smaller latency (100 µs)
- Homogeneity is important

No tracking of individual particles
 Relaxed time resolution (µs, not ns)
 Relaxed apatial resolution (100 µm not

Relaxed spatial resolution (100 μm, not <1 μm)</p>





Carlsruhe Institute of Technolog





- Magnetic field tolerant
- Radiation tolerant

Fast

 Low material budget (multiple-scattering)
 Homogeneous (cf. bump bonds, wires): no change of beam shape

Comparably cheap



# **Sensor Design**

- Monolithic HV-CMOS sensor
  - Sensor and electronics on same die
- Reticle size (2 x 2 cm<sup>2</sup>)
- Thin (~150 μm)
- Hit counting electronics in each pixel
- Frame readout (~10 µs)
- Two modes:
  - Readout of counter states (beam diagnostic)
  - On-chip calculation of projections (quasi live)
- Dose determination by total particle count





## **Proposed Detector Design**



- 1) Carbon fiber plate
- 2) 13 x 13 sensors (2 x 2 cm<sup>2</sup> each)
- 3) Flex cables with aluminum traces
- 4) Electronics boards with FPGA for data processing
- 5) Stabilizing frame



# Karlsruhe Institute of Technology

# **Current Status**

- 3 different chips
  - HitPix1, HitPixINT, HitPix2
- HitPix2, 1x1cm<sup>2</sup>, (200µm)<sup>2</sup> pixels, works well in ion beam
- Radiation tolerant > $10^{15}n_{eq}/cm^2$  (>1y)
- Successfully tested in magnetic field
- Reconstruction algorithms for FPGA evaluated
- First demonstrator matrix assembled

Many test in lab, in beam, in magnetic field and micro ion beam

#### **HIT Beam Area**





## **Single Chip Measurement**



Hits/s



Karlsruhe Institute of Technology, Institute for Data Processing and Electronics, ASIC and Detector Laboratory

Pixel Column

- Blue: pixel counts (number of particles passing a pixel / frame)
- Yellow: calculated mean position of the beam in a frame
- 1 frame = 50 µs
- 1 pixel = 200 µm
- 2D-mode: Duty cycle is 1/20
- Beam settings: C, E255, I3, F1
- Note: Beam outside sensor has the calculated mean position still on the sensor



# **First Multi-Sensor Module**





First multi-chip module, equipped with 5 sensors

Sr-90 hitmap recorded by module

Hits / Pixel / s





#### 2<sup>nd</sup> projection axis

|   |    | 1 | 6 | 30 | 56 | 28 | 5 | 0 |
|---|----|---|---|----|----|----|---|---|
| ) | 0  |   |   |    |    |    |   |   |
|   | 6  |   |   | 2  | 3  | 1  |   |   |
|   | 27 |   | 1 | 8  | 11 | 7  |   |   |
|   | 57 | 1 | 3 | 11 | 25 | 13 | 4 |   |
|   | 28 |   | 2 | 7  | 12 | 6  | 1 |   |
|   | 7  |   |   | 2  | 4  | 1  |   |   |
|   | 1  |   |   |    | 1  |    |   |   |
|   |    |   | _ | _  |    |    |   |   |



#### Hit detection efficiency loss due to amplifier baseline drop





Hit detection efficiency loss due to amplifier baseline drop



- Beam nozzle
  HitPix sensor
  x-y-stage
- 4 Mechanical support5 Power supply6 Computer





Hit detection efficiency loss due to amplifier baseline drop





Hit detection efficiency loss due to amplifier baseline drop





- Efficiency drop after irradiation due to inhomogeneous radiation damage
  - Noise in some pixels
  - $\rightarrow$  Higher threshold needed
  - Lower amplification and less charge collection in some pixels
  - $\rightarrow$  Lower threshold needed



Unclear charge collection

Charge collected in sensor n-well and electronics n-well





Unclear charge collection

Charge collected in sensor n-well and electronics n-well





# HitPix2b

- 2<sup>nd</sup> projection axis → Implemented in HitPix2b
- Hit detection efficiency loss due to amplifier baseline drop. Issue identified by micro ion beam
- $\rightarrow$  Isolation of n-wells by deep p-wells
- $\rightarrow$  Faster feedback for higher rate capability
- Efficiency drop after irradiation due to inhomogeneous irradiation damage  $\rightarrow$  Implementation of threshold tuning
- Unclear charge collection
- $\rightarrow$  100% fill-factor by isolation of n-wells by deep p-wells

# **Conclusion and Outlook**



- We have demonstrated the feasibility of HV-CMOS sensors as candidate for a beam monitoring system.
- Design of optimized successor HitPix2b is almost done, submission is this month.
- We have established a very good cooperation with the HIT team to develop tailored medical applications. A contract has been closed to assemble a matrix with 5 x 5 HitPix2b chips and system integration
- Publications
  - "A Beam Monitor for Ion Beam Therapy based on HV-CMOS Pixel Sensors", in "Medical Applications of Particle Physics", 2023
  - "Development and Characterization of High Voltage CMOS Particle Pixel Sensor with Integrating Electronics", in NIM-A, 2022
  - "High Voltage CMOS active pixel sensor chip with counting electronics for beam monitoring", IEEE TNS, 2022
  - A. Weber, "Development of Integrated Circuits and Smart Sensors for Particle Detection in Physics Experiments and Particle Therapy", PhD thesis, 2021
  - F. Ehrler, "Characterization of monolithic HV-CMOS pixel sensors for particle physics experiments, PhD thesis, 2021"

#### Backup



### **Compact MRI for field tests**





### Scanning the Matrix: 2D Mode





Beam settings: C, E255, I3, F1 Daisy chain readout



# **Scanning the Matrix: Projection Mode**



# **Requirements for Beam Monitor**



- Light ions (proton oxygen)
- For all beam parameters
- Beam position measurement better 200 µm
- Spot size measurement better 400 µm
- Dose measurement deviation better 0.5%
- Integration time less than 100 µs
- Additional latency less than 100 µs
- Value update every 1-2 µs
- Interlock generation in real time
- Radiation tolerant, detector in operation for 5 years (fluence: 3.5 x 10<sup>14</sup> C/cm<sup>2</sup> and 6.5 x 10<sup>15</sup> p/cm<sup>2</sup>)
- Size 25 x 25 cm<sup>2</sup>
- Material budget: 2 mm water equivalent for detector stack
- Detector has to tolerate light, acoustic noise and magnetic field

# **Sensor Design**



| Requirement                  | Design decision                       |
|------------------------------|---------------------------------------|
| Spatial/spot size resolution | 200 x 200 µm² pixels                  |
| High-rate capability         | In-pixel counting                     |
| Low latency                  | Column adder: Projection readout mode |
| 2D beamshape                 | Frame readout mode                    |
| Material budget              | Thinned sensors                       |

#### HitPix1 (5 x 5 mm<sup>2</sup>)

Hit counting electronics, 2D mode, projection mode

#### HitPix2 (1 x 1 cm<sup>2</sup>)

Improved front-end

- HitPix\_Integrating (5 x 5 mm<sup>2</sup>)
  - Charge integrating

#### Beam monitoring

# **HV-CMOS**



- Sensitive sensor and readout electronics in one silicon piece
  - basic electronics embedded in deep n-well (amplifier, shaper, comparator, counter, adder, masking,...)
- Produced in standard technology of industrial chip producers
  - 180nm HV-CMOS: developed for automotive industry
  - small pixel sizes: <50x50µm² possible (we will envisage 200x200µm²)</p>
  - thin substrates: down to ~50µm possible (~150µm mechanically reasonable (~300µm water equivalent))
- Signals generated in depletion region below electronics island
  - additional applied high voltage (HV <100V) accelerates charge collection by drift  $\rightarrow$  radiation harder and faster
- Existing chips have been tested in the particle beams at HIT to examine signal size and radiation hardness





#### **Some results**



- (1/2 annual dose)
- area outside ring is not irradiated



### Fast and easy algorithm for FPGA implementation

- Weighted mean
  - robust and precise
- Can be calculated while data is read out
  - very fast, minor delay





# **GEANT** Simulation: material impact



#### Simulated Geometry

simulate effect of detector stackup on beam deflection and energy degradation

#### Stackup:

- backplate (200µm CFRP) -
- sensor (100µm Si, with 100µm gap)
- PCB traces (18µm Cu, 50% fill)
- PCB substrate (91µm Kapton)
- PCB traces (18µm Cu, 50% fill)

Beam: 1mm FWHM, 100MeV protons

#### **GEANT4** Simulations - Gaps



#### 1200 92.6% HitPix detector 94.6% one copper layer 3500 aluminum traces 96.0% 1000 95.1% 1 mm water 3000 |x| < 3.5mm 800 2500 2000 600 1500 400 1000 200 500 98.75 99.00 99.25 99.50 99.75 100.00 -4-2 Remaining Energy (MeV/u) Deflection at 0.5m (mm)

 $\rightarrow$  copper in PCB traces introduces a lot of deflection



#### **GEANT4 Simulations - PCB fill factor**

Karlsruhe Institute of Technology, Institute for Data Processing and Electronics, ASIC and Detector Laboratory

#### **GEANT4** Simulations - Different Stackups

Beam monitoring

# Karlsruhe Institute of Technology

# Single HitPix2 Carrier



**Test system** 





#### Artix-7 FPGA (custom firmware)

# GECCO adapter board (developed at IPE)

HitPix 2 Carrier PCB

Beam monitoring

#### **Beam Test Setup**









Abs(eCurrentDensity-V) (A\*cm^-2)

| 2.985e-20 | 8.735e-17 | 2.556e-13 | 7.479e-10 | 2.189e-06 | 6.404e-03 | 1.874e+01 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|           |           |           |           |           |           |           |





Abs(eCurrentDensity-V) (A\*cm^-2)

| 4.137e-20 | 1.089e-16 | 2.867e-13 | 7.546e-10 | 1.986e-06 | 5.229e-03 | 1.376e+01 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|           |           |           |           |           |           |           |