The Tameness of QFT and CFT

Lorenz Schlechter

based on

2210.10057 part I 2302.04275 part II

Together with Michael Douglas and Thomas Grimm

22.05.2023

Content

What is Tameness?
 Tameness of QFT

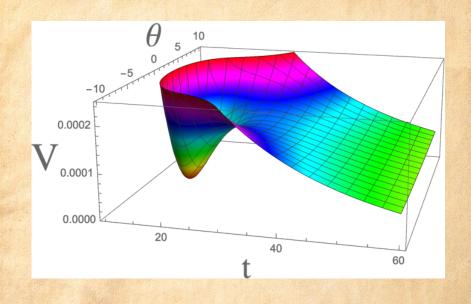
 perturbative results
 non-perturbative results

 Tameness as a Swampland Conjecture

 Tameness of the space of CFTs
 Tameness of the observables in CFTs
 Tameness of the observables in EFTs

What is tameness?

- Tameness is a generalized finiteness principle
- Forbids discrete infinities
- Idea: Functions appearing in physics should only behave in finitely many different ways



 Allow only functions which are definable in an o-minimal structure S

Definition of a Structure

Collections $S = (S_n)_{\geq 1}$ of sets in \mathbb{R}^n closed under $\cup, \cap, \times, /$ and linear projections containing at least all algebraic sets (= zero sets of polynomials).

Definition of o-minimality

A structure is o-minimal if the definable subsets of \mathbb{R} are finite unions of intervals and points

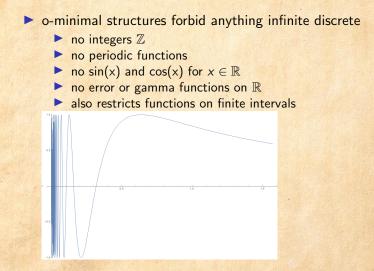
Definable subsets of $\mathbb R$

- Only finitely many points and intervals.
- But the intervals can be infinitely long.
- Higher dimensional sets have to project down to these.

The language

▶ sets in o-minimal structure: tame sets
 ▶ functions whose graph is a tame set: tame functions
 → tame manifolds, tame bundles, tame geometry

What does this mean in practice?



Examples of o-minimal structures

R_{alg}: semi-algebraic sets (P(x) ≥ 0 instead of P(x) = 0)
R_{an}: restricted analytic functions
R_{exp}: real exponential function
R_{an,exp}: combination of the two above
R_{Pfaff}: structure of all Pfaffian functions
...

Applications of tamness

Used in proofs of many deep mathematical conjectures Ax-Schanuel for Hodge Structures [Bakker, Tsimerman'17] Griffiths' conjecture [Bakker, Brunebarbe, Tsimerman'18] Andre-Oort conjecture [Pila, Shankar, Tsimerman'21] Geometric André-Grothendieck Period Conjecture [Bakker, Tsimerman'22]

Finiteness of of vacua [Bakker, Grimm, Schnell, Tsimerman'21]

Tameness of QFT

What is the right question?

Basic questions

- Which objects are tame?
- To be able to talk about tameness we need structures, what are the right structures?
- Do different objects live in different structures or does there exist a common structure?
- Is there one overarching structure like R_{an,exp} or does every QFT define its own structure?
- Is every QFT tame?

Structures from QFTs

Interesting objects of a QFT include

- The Lagrangian/action
- The partition function Z
- The correlators
- Amplitudes/observables
- To be able to talk about a QFT we need a language to formulate everything in
 - A set of theories *T*, e.g parameter space of specified Lagrangians
 - Set S of Euclidean spacetimes with metric (Σ, g)
 - Both are definable in some structure $\mathbb{R}_{\mathcal{T},\mathcal{S}}^{def}$

Structures from QFTs

- The theory is defined using $\mathbb{R}^{\mathrm{def}}_{\mathcal{T},\mathcal{S}}$.
- Add the partition function and correlators to the original structure → ℝ_{T,S}
- ▶ We often take ℝ^d, T^d, S^d as our spacetime and drop the explicit dependence on S, e.g ℝ_{QFT}, ℝ_{CFT}, ℝ_{EFT}.

Questions about $\mathbb{R}_{\mathcal{T},\mathcal{S}}$

If ℝ^{def}_{T,S} is o-minimal, when is ℝ_{T,S} o-minimal?.
 Are observables tame?
 Under which conditions is ℝ^{def}_{T,S} o-minimal?
 Tameness of the space of theories?

Theorem: For any renormalizable QFT with finitely many fields and interactions all finite-loop amplitudes are tame functions of the masses, external momenta and coupling constants definable in $\mathbb{R}_{an,exp}$. [Douglas,Grimm,LS - Part I]

Feynman integrals are periods

periods are definable in R_{an,exp}
 [Bakker,Klingler,Tsimerman][Bakker,Mullane '22]

- \rightarrow Feynman integrals are definable
- → Amplitudes are definable
- If the Lagrangian is tame the *perturbative* corrections will not destroy this tameness!

 \rightarrow perturbative QFTs are tame if the Lagrangian is tame

Feynman integrals

Can write a *I*-loop Feynman integral in a *d*-dimensional theory in Lee-Pomeransky representation [Lee,Pomeransky 13'] $I = \frac{\Gamma(\frac{d}{2})}{\Gamma\left(\frac{(\ell+1)d}{2} - v\right)\prod_{j=1}^{n}\Gamma(v_j)} \int_{x_j \ge 0} \prod_{j=1}^{n} \mathrm{d}x_j x_j^{v_j - 1} G^{-\frac{d}{2}} .$

- G is the Lee-Pomeranski polynomial depending on the masses and external momenta.
- We can interpret this as the defining polynomial of variety in projective space.

$$\omega_i = \int_{\gamma_i} \Omega \equiv \int_{\gamma_i} \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2 \wedge \ldots \wedge \mathrm{d}x_n}{P(\mathsf{a}_j, x_i)} \, .$$

Lots of technical details involved in the identification! (integration contours, open vs closed chains, divergences ...). In a detailed analysis these work out.

What about non-perturbative effects?

- ► Instantons appear to produce cos potentials→ appear to be dangerous.
- The Feynman diagram argument does not help due to the non-perturbative nature.
- But: Tameness is not conserved under power series expansion! $x^{2} = \frac{\pi^{2}}{3} - 4\cos(x) + \cos(2x) + \dots$

Look at some examples of exactly solvable theories.

Gauged linear sigma models

• 2d theory with $\mathcal{N} = 2$ supersymmetry.

Exactly solvable by supersymmetric localization.

The sphere partition function is given in terms of the Kähler potential of the described geometry [Jockers et al. 12']

$$Z_{S_2} = e^{-K} = \overline{\Pi} \Sigma \Pi$$

As the partition function is given in terms of periods it is definable in R_{an,exp}!

Solvable 0d QFTs

- On points the path integral reduces to usual integrals
- Many 0d QFTs are solvable like the Sine-Gordon model or the \$\phi^4\$ theory

$$Z(m,\lambda) = \int_{-\infty}^{\infty} \mathrm{d}\phi \ e^{-\frac{m^2}{2}\phi^2 - \frac{\lambda}{4!}\phi^4} = \sqrt{\frac{3}{\lambda}}e^{\frac{3m^4}{4\lambda}} \ m \ K_{1/4}\left(\frac{3m^4}{4\lambda}\right)$$
$$Z(g) = \int_{-\pi}^{\pi} \mathrm{d}\phi \ e^{-g \ \sin(\phi)^2} = 2e^{-g/2}\pi I_0(g/2) \ ,$$

- \blacktriangleright I_0 is a tame function, period of an explicit geometry
- K_{1/4} is an exponential period, tameness of these is an open question!
- The explicit functions in the model form a Pfaffian chain, definable in R_{Pfaff} [Van den Dries, private communication]

Other tame examples

Id harmonic oscillator

$$Z(\beta,m) = \frac{1}{\sinh(\frac{\beta}{2m})}$$

2d string theories, 3d non-critical M-theory $F_{3d}(\omega,\mu) = -\frac{1}{6\omega^2}\mu^3 + \frac{\Lambda}{4\omega}\mu^2 - \frac{1}{2\pi\omega_0}\mu^2\log(1-e^{-2\pi\mu/\omega}) + \frac{1}{2\pi^2}\mu Li_2(1-e^{-2\pi\mu/\omega}) + \frac{\omega}{4\pi^3}Li_3(1-e^{-2\pi\mu/\omega})$

> 2d Yang-Mills theory $Z_{SU(2)} = e^{A\lambda/16} (\theta_3(e^{-A\lambda/16}) - 1)$

• Klein-Gordon field in *d*-dimensional AdS $O^{(d)}(y_1, y_2) = (2\pi)^{-d/2} \left(\frac{(y_2 - y_1)^2}{\sqrt{m}} \right)^{\frac{d-2}{2}} K_{\frac{d-2}{2}}(\sqrt{m}(y_2 - y_1)^2) .$

Is every QFT tame?

No! Can construct explicit counterexamples:

• infinite discrete symmetries $Z(g \cdot \lambda) = Z(\lambda)$

Need to be gauged or broken

 Fits with no global symmetries conjecture [Banks,Dixon 88'][Banks,Seiberg 10']

non-tame Lagrangian

Simple example : $V(\theta) = A\cos(\theta) + B\cos(\alpha\theta)$ α irrational

► Allows for infinite spirals → tension with distance conjecture [Grimm,Lanza,Li 22]

Observables also need not be tame

Neutrino oscillations

Conjecture: All effective theories valid below a fixed finite energy cut-off scale Λ that can be coupled to QG are labelled by a tame parameter space and have scalar field spaces and Lagrangians that are tame in an o-minimal structure [Grimm 21']

What about string theory

- ▶ Perturbative string theory has infinitely many fields→ not a tame theory
- The partition functions are expressible via θ functions → tame functions
- Any effective theory with finite cutoff Λ is tame.
- In 2d string theory one can understand what happens to the infinite discrete modes
- Goldstone modes of broken area-preserving diffeomorphisms of 3d theory
- Only a toy model!

Tameness of conformal field theories

Tameness of CFTs

Conjecture 1: All observables of a tame set \mathcal{T}_{CFT} are tame functions. [Douglas,Grimm,LS - Part II]

Conjecture 2(a):The theory space $\mathcal{T}_{\rm CFT}$ in d=2 is tame if

- the central charge is bounded
- lowest operator dimension is bounded from below. [Douglas,Grimm,LS - Part II]

Conjecture 2(b): The theory space \mathcal{T}_{CFT} in d > 2 is tame if

- an appropriate measure for the degrees of freedom is bounded
- theories differing by discrete gaugings are identified. [Douglas,Grimm,LS - Part II]

Evidence for the conjectures - Observables

Conformal symmetry fixes the form of the 2- and 3-point correlators to

$$\langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\rangle = rac{\delta_{ij}}{(x_1-x_2)^{\Delta_i+\Delta_j}}$$

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\rangle = \frac{\zeta_{1,2,3}}{x_{12}^{\Delta_1+\Delta_2-\Delta_3}x_{23}^{-\Delta_1+\Delta_2+\Delta_3}x_{13}^{\Delta_1-\Delta_2+\Delta_3}}$$

Trivially tame in the positions and operator dimensions
 First non-trivial case is the 4-point correlator

Evidence for the conjectures - Observables

 Conformal symmetry fixes the dependence on the positions and weights in terms of conformal partial waves (blocks) W_O:

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\mathcal{O}_4(x_4)\rangle = \sum_{\mathcal{O}\in\mathcal{O}_1\times\mathcal{O}_2} C_{1,2,\mathcal{O}}C_{3,4,\mathcal{O}}W_{\mathcal{O}}$$

 $W_{\mathcal{O}} = \frac{1}{C_{1,2,\mathcal{O}}C_{3,4,\mathcal{O}}} \sum_{\alpha \in \text{descendants}} \langle 0 | \mathcal{O}_1 \mathcal{O}_2 | \alpha \rangle \langle \alpha | \mathcal{O}_3 \mathcal{O}_4 | 0 \rangle$

 Conformal partial waves are Lauricella type hypergeometric functions

In 2d Gauss hypergeometric functions

$$\begin{split} W_{\mathcal{O}}^{2d}(\Delta) &= \left(\frac{x_{14}^2}{x_{13}^2}\right)^{\frac{\Delta_{34}}{2}} \left(\frac{x_{24}^2}{x_{14}^2}\right)^{\frac{\Delta_{12}}{2}} \frac{u^{\Delta/2} v^{\Delta/2}}{x_{12}^{\Delta_1 + \Delta_2} x_{34}^{\Delta_3 + \Delta_4}} \cdot \\ &_2F_1\left(\frac{\Delta - \Delta_{12}}{2}, \frac{\Delta + \Delta_{34}}{2}; \Delta; u\right) \,_2F_1\left(\frac{\Delta - \Delta_{12}}{2}, \frac{\Delta + \Delta_{34}}{2}; \Delta; v\right) \,, \end{split}$$

Evidence for the conjectures - Observables

$$\begin{split} W_{\mathcal{O}}^{2d}(\Delta) &= \left(\frac{x_{14}^2}{x_{13}^2}\right)^{\frac{\Delta_{34}}{2}} \left(\frac{x_{24}^2}{x_{14}^2}\right)^{\frac{\Delta_{12}}{2}} \frac{u^{\Delta/2} v^{\Delta/2}}{x_{12}^{\Delta_1 + \Delta_2} x_{34}^{\Delta_3 + \Delta_4}} \cdot \\ &_{2}F_{1}\left(\frac{\Delta - \Delta_{12}}{2}, \frac{\Delta + \Delta_{34}}{2}; \Delta; u\right) {}_{2}F_{1}\left(\frac{\Delta - \Delta_{12}}{2}, \frac{\Delta + \Delta_{34}}{2}; \Delta; v\right) \,, \end{split}$$

- Tame in the positions
- Tameness in Δ more complicated
- Analysis shows that the differences in operator dimensions Δ_{i,j} need to be bounded!
- Fits nicely with the no parametric separation of scales conjecture [Lüst, Palti, Vafa 19']

Evidence for the conjectures - Space of theories - 2d

► The space of 2d CFTs is clearly not o-minimal ► Many infinite discrete sets exist, e.g. unitary minimal models $c = 1 - \frac{6}{(p+1)(p+2)} \xrightarrow{p \to \infty} 1 \qquad \Delta_1 = \frac{3}{4(p+1)(p+2)} \xrightarrow{p \to \infty} 0$

► WZW models

$$c = 3 - \frac{6}{(p+2)} \xrightarrow{p \to \infty} 1 \qquad \Delta_1 = \frac{3}{4(p+2)} \xrightarrow{p \to \infty} 0$$

For fixed lower bound on Δ_1 only finitely many theories

Evidence for the conjectures - Space of theories - 3d

- Again many families of theories parameterized by discrete choices of parameters
- Dualities identify different choices, e.g level-rank duality $F(N, k) = F(k, N) = \frac{N}{2} log(k + N) + \dots$

For fixed upper bound of F only finitely many theories!

Outlook

- Study consequences of tameness
- Connection to complexity.
- Relations between amplitudes(Ax-Schanuel)

Summary

- Perturbative QFTs are tame if the Lagrangian is tame
- Non-perturbative tameness requires restrictions on the theories
 - CFT with bounded degrees of freedom and finite gap → leads to bounds on operator dimensions
 - EFT originating in QG

→Tameness as a swampland conjecture

Dualities play an important role in the tameness of the theory space

Beyond Large Complex Structure: Quantized Periods and Boundary Data for One-Modulus Singularities

Brice Bastian, Damian van de Heisteeg,² Lorenz Schlechter¹

¹ Institute for Theoretical Physics, Utrecht University Princetonplein 5, 3584 CC Utrecht, The Netherlands

² Center of Mathematical Sciences and Applications, Harvard University 20 Garden Street, Cambridge, MA 02138, USA

Abstract

We study periods near boundaries in one-dimensional complex structure moduli spaces of Calabi-Yau threefolds. Near the large complex structure point these asymptotic periods are well understood in terms of the topological data of a mirror Calabi-Yau manifold. The aim of this work is to characterize the period data near other boundaries in moduli space such as generalized conifold points and so called K-points. We provide general models for these asymptotic periods in a quantized three-form basis. Moreover, we elucidate the geometrical meaning of the model-dependent coefficients that appear in these expressions: we find that these can be identified with certain topological and arithmetic numbers associated to the singular Calabi-Yau geometry at the moduli space boundary. To be more precise, for conifold points we encounter L-function values of the modular form associated to the conifold itself; for K-points we find a correspondence between the logmonodromy matrix and intersection forms of rigid K3 surfaces.