ECAL-P Background

- Shan Huang (Tel Aviv University) shan.huang (at) desy.de
 - LUXE SAS Workforce

06 Feb 2023

Previously in ECAL-P

16.5 GeV electrons hit on Aluminium window

t = 0 t =

$$= 14.5 \text{ ns}$$
 $t = 25 \text{ ns}$

16.5 GeV electrons hit on Aluminium window

t = 0

Previously in ECAL-P

- (Signal + Local background)/Signal
 - Signal: mono-energetic positron shower
 - Background: average BG from beam-only runs
 - Local BG: the part of BG in which pads SG has E_{dep}
- A smooth average BG is required
 - Low-probability high E_{dep} will be "enhanced" if it appears at the wrong place
- High statistics could possibly smooth them
- Or need to separate two kinds of background

Challenges

- Hadronic background
 - not considered in the CDR
 - forms island-like irregularly high E_{dep} in ECAL
- Neutron shields applied (since Feb 2022)
- To improve statistics,
 - extra 2 BX simulated (thanks to Sasha)
 - 0.46 BX in <u>last report</u> (Nov 2022)
 - Still have irregular E_{dep} ...
- Idea:
 - 1. Keep the averagely smooth background

Randomise the irregular background
Technical problem: How to distinguish hadronic
background from the averagely smooth one?
(The information is stored in different "trees")

Separation

Separation in time, space, and/or Edep

Cut at 20 ns / 1 MeV
Total records: 6.1k/BX
Cut-out records: 650/BX

	kolo k		00		00	lototototototototo
layerid	*	cellx	*	celly	*	edep *
	koko k		00		00	
18	*	52	*	6	*	0.0010809 *
17	*	2	*	1	*	0.0013039 *
11	*	26	*	10	*	0.0010762 *
16	*	98	*	10	*	0.0021620 *
18	*	61	*	10	*	0.0019286 *
17	*	74	*	7	*	0.0010823 *
17	*	106	*	10	*	0.0018788 *
10	*	35	*	0	*	0.0022622 *
19	*	42	*	5	*	0.0017155 *
18	*	25	*	5	*	0.0010698 *
2	*	24	*	6	*	0.0012217 *
4	*	45	*	0	*	0.0011449 *
14	*	1	*	8	*	0.0014564 *
5	*	17	*	0	*	0.0011747 *
11	*	35	*	6	*	0.0010070 *
13	*	99	*	7	*	0.0014256 *
13	*	63	*	9	*	0.0011155 *
1	*	53	*	6	*	0.0025060 *
14	*	84	*	6	*	0.0016487 *
9	*	6	*	1	*	0.0011490 *
8	*	17	*	10	*	0.0011974 *
12	*	12	*	5	*	0.0011332 *
10	*	34	*	0	*	0.0012514 *
10	*	11	*	3	*	0.0044093 *
17	*	103	*	4	*	0.0010814 *

6

			00		o lo		**
layerid	*	cellx	*	celly	*	edep	*
	lo lo l				 o o		k ok
18	*	52	*	6	*	0.0010809	*
17	*	2	*	1	*	0.0013039	*
11	*	26	*	10	*	0.0010762	*
16	*	98	*	10	*	0.0021620	*
18	*	61	*	10	*	0.0019286	*
17	*	74	*	7	*	0.0010823	*
17	*	106	*	10	*	0.0018788	*
10	*	35	*	0	*	0.0022622	*
19	*	42	*	5	*	0.0017155	*
18	*	25	*	5	*	0.0010698	*
2	*	24	*	6	*	0.0012217	*
4	*	45	*	0	*	0.0011449	*
14	*	1	*	8	*	0.0014564	*
5	*	17	*	0	*	0.0011747	*
11	*	35	*	6	*	0.0010070	*
13	*	99	*	7	*	0.0014256	*
13	*	63	*	9	*	0.0011155	*
1	*	53	*	6	*	0.0025060	*
14	*	84	*	6	*	0.0016487	*
9	*	6	*	1	*	0.0011490	*
8	*	17	*	10	*	0.0011974	*
12	*	12	*	5	*	0.0011332	*
10	*	34	*	ø	*	0.0012514	*
10	*	11	*	3	*	0.0044093	*
17	*	103	*	4	*	0.0010814	*
- /	1.1	100				010010014	4

Edep [GeV]

Randomisation

 $E_{dep}\ per\ tower\ turns\ smoother$

Results

Before randomisation

After randomisation

Higher statistics and randomisation successfully remove the peaks at around 3 GeV and 10 GeV

Summary

- higher statistics simulation and randomisation
- Method of randomisation:
 - Separate hadronic background from averagely smoothy background by making cuts at time and energy deposition
 - Keep the smooth background while add the randomly re-distributed irregular background
- Next steps (if needed):
 - Separate hadronic and EM background "from root"
 - More statistics through simulation

Bonus for Python user in LUXE: <u>LUXEStyle for matplotlib</u>

Fluctuation in the structures in background-over-signal ratio is smoothed by