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Two different time scales: plasma and beam

Time scale 1: how fast the plasma 
responds to the beam


Time scale 2: how fast the particle beam 
evolves


Quasi-static approximation (QSA): 


• plasma time scale << beam time scale

• beam considered as « frozen » when 

plasma response is calculated

• used in most analytical models, and in 

some particle-in-cell simulation codes

• particularly powerful for beam-driven 

plasma acceleration

Beam-driven plasma acceleration I
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Exciting plasma wakefields 
with particle beams



Linear plasma wakefield

➢ Using a cold fluid description for plasma electrons and immobile ions:

➢ At the heart of plasma accelerators, the plasma oscillation:

d2
t ξ = − ω2

pξ

ωp =
n0e2

meϵ0

a displaced plasma slice is an 
harmonic oscillator:

with a characteristic frequency  
called the plasma frequency:

ωp

∂np

∂t
+ ∇ ⋅ (np ⃗vp) = 0

( ∂
∂t

+ ⃗v p ⋅ ∇) ⃗p p = − e( ⃗E + ⃗v p × ⃗B )

continuity

eq. of motion

Maxwell

linearize

∇ ⋅ ⃗E =
ρ
ϵ0

, etc .

np = n0 + n1, etc .

∂n1

∂t
+ n0∇ ⋅ ( ⃗v1) = 0

me
∂ ⃗v 1

∂t
= − e ⃗E 1

∇ ⋅ ⃗E 1 = − e
n1

ϵ0
+

q
e

nb

ϵ0
, etc .



Linear plasma wakefield

➢ At the heart of plasma accelerators, the plasma oscillation:
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➢ Using a cold fluid description for plasma electrons and immobile ions:



Linear plasma wakefield

➢ This equation is solved using its corresponding Green’s function , 

and the solution reads:

−
q
e

sin(kpξ)Θ(−ξ)

n1(x, y, ξ) = −
q
e ∫

∞

ξ
nb(x, y, ξ′￼) sin[kp(ξ − ξ′￼)] kpdξ′￼

Quasi-static approximation (QSA): 


• plasma time scale << beam time scale

• beam considered as « frozen » when 

plasma response is calculated

• used in most analytical models, and in 

some particle-in-cell simulation codes.

• particularly powerful for beam-driven 

plasma acceleration.

QSA in equations: 


( ∂
∂ξ2

+ k2
p) n1 = k2

p
q
e

nb

(z, t) ⟶ (ξ = z − ct, τ = t)
change of coordinates:

QSA : ∂τ ≪ ∂ξ

⟹ ∂τ = 0 in plasma equations

⟹ ∂t = −
1
c

∂ξ and ∂z = ∂ξ

Note: the plasma density perturbation is local and matches the transverse extent 
of the beam. This is not true for the fields.



Linear plasma wakefield

What about the fields? 
 
More complicated: use Maxwell-Ampère and Maxwell-Faraday, go to the Fourier 
space of the  coordinate, assume azimuthal symmetry and , use radial 
Green’s function to solve equation on , and Fourier back with a contour integral 
in the complex plane, see Keinigs and Jones, Phys. Fluids 30, 252 (1987).

ξ vb ≃ c
r

Ez(r, ξ) =
qk2

p

ϵ0 ∫
+∞

0
r′￼dr′￼K0(kpr>)I0(kpr<)∫

+∞

ξ
dξ′￼nb(r′￼, ξ′￼)cos kp(ξ − ξ′￼)

Er(r, ξ) = −
q
ϵ0 ∫

+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)(∫

+∞

ξ
kpdξ′￼

∂nb(r′￼, ξ′￼)
∂r′￼

sin kp(ξ − ξ′￼) +
∂nb(r′￼, ξ)

∂r′￼ )
Bθ(r, ξ) = −

q
ϵ0 ∫

+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)

∂nb(r′￼, ξ)
∂r′￼

Transverse wakefield: W = Er − cBθ = −
qkp

ϵ0 ∫
+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)∫

+∞

ξ
dξ′￼

∂nb(r′￼, ξ′￼)
∂r′￼

sin kp(ξ − ξ′￼)

https://doi.org/10.1063/1.866183


Linear plasma wakefield

Behind the beam:

-  and  are sinusoidal functions of  that are 90° 
out of phase with each other

- 

- Acceleration and focusing: a quarter of the 
plasma wave 
 
Similar to laser-driven linear plasma wakes, except 
for the radial profile involving Bessel functions.

Er Ez ξ

B = 0

Ez(r, ξ) =
qk2

p

ϵ0 ∫
+∞

0
r′￼dr′￼K0(kpr>)I0(kpr<)∫

+∞

ξ
dξ′￼nb(r′￼, ξ′￼)cos kp(ξ − ξ′￼)

Er(r, ξ) = −
q
ϵ0 ∫

+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)(∫

+∞

ξ
kpdξ′￼

∂nb(r′￼, ξ′￼)
∂r′￼

sin kp(ξ − ξ′￼) +
∂nb(r′￼, ξ)

∂r′￼ )
Bθ(r, ξ) = −

q
ϵ0 ∫

+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)

∂nb(r′￼, ξ)
∂r′￼

W = Er − cBθ = −
qkp

ϵ0 ∫
+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)∫

+∞

ξ
dξ′￼

∂nb(r′￼, ξ′￼)
∂r′￼

sin kp(ξ − ξ′￼)

e+e-

Ez

W

Doche et al., Sci Rep 7, 14180 (2017)

https://doi.org/10.1038/s41598-017-14524-4


Linear plasma wakefield

Inside the beam (different from laser-driven case):

-  and  are shielded by the plasma, and decays radially over a plasma skin 
depth 


-  due to beam current and plasma radial and longitudinal currents


- Long beam:  to shield , return current to shield 


- Short beam: there is an instantaneous inductive shielding driven by the fast 
variation of the plasma radial current

Er Bθ
1/kp

Bθ ≠ 0
n1 ≃

q
e

nb Er Bθ

Ez(r, ξ) =
qk2

p

ϵ0 ∫
+∞

0
r′￼dr′￼K0(kpr>)I0(kpr<)∫

+∞

ξ
dξ′￼nb(r′￼, ξ′￼)cos kp(ξ − ξ′￼)

Er(r, ξ) = −
q
ϵ0 ∫

+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)(∫

+∞

ξ
kpdξ′￼

∂nb(r′￼, ξ′￼)
∂r′￼

sin kp(ξ − ξ′￼) +
∂nb(r′￼, ξ)

∂r′￼ )
Bθ(r, ξ) = −

q
ϵ0 ∫

+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)

∂nb(r′￼, ξ)
∂r′￼

W = Er − cBθ = −
qkp

ϵ0 ∫
+∞

0
r′￼dr′￼K1(kpr>)I1(kpr<)∫

+∞

ξ
dξ′￼

∂nb(r′￼, ξ′￼)
∂r′￼

sin kp(ξ − ξ′￼)



Linear plasma wakefield

Going to 
longer 
beams

nb,peak = 10−3n0

Inside the beam (different from laser-driven case):

-  and  are shielded by the plasma, and decays radially over a plasma skin 
depth 


-  due to beam current and plasma radial and longitudinal currents


- Long beam:  to shield , return current to shield 


- Short beam: there is an instantaneous inductive shielding driven by the fast 
variation of the plasma radial current

Er Bθ
1/kp

Bθ ≠ 0
n1 ≃

q
e

nb Er Bθ



Linear plasma wakefield

Inside the beam (different from laser-driven case):

-  and  are shielded by the plasma, and decays radially over a plasma skin 
depth 


-  due to beam current and plasma radial and longitudinal currents


- Long beam:  to shield , return current to shield 


- Short beam: there is an instantaneous inductive shielding driven by the fast 
variation of the plasma radial current

Er Bθ
1/kp

Bθ ≠ 0
n1 ≃

q
e

nb Er Bθ

∂ξ jr ⟹ ∂ξAr ⟹ Er (term ∂tAr) and Bθ (term ∂zAr)

Er Er

Short and small 
beam with 

kpσz = kpσr = 0.1

kp(ct − z) kp(ct − z)

k p
r

k p
r



Linear plasma wakefield

Radial profile:

- Looks like the beam for large beams ( ), similar to the laser-driven 
case, it’s local

- Bessel-like radial profiles for small beams ( ), extending over a 
plasma skin depth , wakefield is not local: it extends outside the beam


- In sharp contrast to laser-driven case for which radially , in 
other words a Gaussian laser drives a Gaussian wake radially (it’s local), 
no Bessel involved.

kpσr ≫ 1

kpσr ≪ 1
1/kp

ϕ, Ez, Er ∝ I, ∂rI
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qk2

p
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Linear plasma wakefield

Radial profile:

- Looks like the beam for large beams ( ), similar to the laser-driven 
case, it’s local

- Bessel-like radial profiles for small beams ( ), extending over a 
plasma skin depth , wakefield is not local: it extends outside the beam


- In sharp contrast to laser-driven case for which radially , in 
other words a Gaussian laser drives a Gaussian wake radially (it’s local), 
no Bessel involved.

kpσr ≫ 1

kpσr ≪ 1
1/kp

ϕ, Ez, Er ∝ I, ∂rI

Small beams 
( )kpσr ≪ 1

Ez Ez

Large beams 
( )kpσr ≫ 1

Hue et al., PRR 3, 043063 (2021)

https://doi.org/10.1103/PhysRevResearch.3.043063


moving to nonlinear wakes…



Nonlinear plasma wakefield

If :

- the plasma is no longer able to screen the beam

- the perturbation theory, that assumes , is no longer valid

nb > n0

n1 ≪ n0

In 1D and using QSA, it’s purely electrostatic and it’s analytical: 
[Krall et al., PRA 44, 6854 (1991); Rosenzweig, PRL 58, 555 (1987)]

d2ϕ
dξ2

=
k2

p

2 [ 2nb

n0
+

1
(1 + ϕ)2

− 1]
Ez

E0
= −

1
kp

dϕ
dξ

QSA  stationary plasma flow in moving window ⟹
⟹ n |dtξ | = n0c ⟹ n = n0c/(c − vz)

with  the nonrelativistic 
wavebreaking field, or equivalently the field of a 

1D sinusoidal density perturbation with .   

E0 = mcωp /e

n1 = n0

https://doi.org/10.1103/physreva.44.6854
https://doi.org/10.1103/physrevlett.58.555


Nonlinear plasma wakefield

What about nonlinear 3D wakes?

- no complete and self-consistent analytical solution, but phenomenological 
models and numerical modelling

- possible to have rather good physical intuition

In addition to the dimensionless parameter , the nonlinear 3D wakes also 
depend on:

nb /n0

Q̃ = k3
pNb/n0 = (2π)3/2kpσzΛΛ = 2I/IA = k2

pσ2
r nb/n0

normalized charge 
relevant for short beams with  kpσz ≪ 1

normalized current 
relevant for moderately-long beams ( ) kpσz ≳ 0.2

(with  the Alvén current)IA = 4πmeϵ0c3/e ≃ 17 kA

Three regimes:

- : linear regime

- : nonrelativistic and nonlinear regime

- : relativistic and nonlinear regime

nb /n0 ≪ 1
nb /n0 ≳ 1 and (Λ < 1 or Q̃ < 1)
nb /n0 ≳ 1 and (Λ > 1 or Q̃ > 1)



Nonlinear plasma wakefield - electron driver

Electron-driven nonlinear 3D wakes

- plasma electrons are expelled/blown 
out of the propagation axis, thus 
forming an ion cavity

- plasma electrons are then pulled 
back by plasma ions, overshooting the 
propagation axis and setting up a 
nonlinear plasma oscillation

- this is the so-called blowout regime, 
where the plasma wave takes the 
form of ion cavities surrounded by thin 
electron sheaths

Whether it’s a relativistic or nonrelativistic blowout, a key property of these 
wakes is that particle crossing (or transverse wave breaking) occurs, and the 
fluid theory becomes inadequate to describe the response of plasma 
electrons. A fully kinetic approach is required.



Crossing of plasma electron trajectories:

Note: particle crossing is a necessary 
condition for the blowout regime, where a 
cavity void of plasma electrons is formed.

d2r

d!2 = −
1
2

r +
c!r0,r,!"

r
. !19"

Here the force term −r /2 comes from the uniform ion
background. The force term c /r comes from the two-
dimensional !2D" cylindrical electrostatic force from the to-
tal electron charge inside the ring, where c!r0 ,r ,!" is the
total electron charge per unit length within the sheet with a
initial position r0 and a position r at !. With the assumption
of no crossing, c!r0 ,r ,!"= 1

2r0
2+#0

rr!nb!r! ,!"dr!. For the bi-
flat-top model and a particle with r0"a, c!r0 ,r ,!"= 1

2 !r0
2

+nba2".
This equation can be easily integrated numerically. Fig-

ure 2 shows two trajectory plots for different nb0 for a bi-
Gaussian beam driver with kp#r=0.01 and kp#z=$2. In Fig.
2!a" nb0=1.0 and there is no trajectory crossing, while in Fig.
2!b" nb0=10, clear trajectory crossing can be seen.

Clearly there is a transition from no crossing to crossing.
We can derive such a condition if we calculate the maximum
radius rm!r0" for an arbitrary initial radius r0. This is possible
because the particle trajectories all oscillate with frequencies
in the variable ! that are very close to each other, so they will
each reach their maxima at nearly the same value of !. This
effect can also be seen in the above figures. Trajectory cross-
ing occurs when rm!r0" changes from a monotonically in-
creasing function to a function with both a local maxima and
minima.

First we treat the case r0$a. The equation of motion can
be integrated once leading to the potential energy %!r ,r0" for
a particle with an initial radius r0,

%!r,r0" = −
1
4

r2 +
1
4%nba2

r0
2 + 1&r0

2%1 + 2 ln% r

r0
&& . !20"

A particle’s velocity is 0 for both r=r0 and r=rm!r0", so
the potential for these two radii should be the same,

%!rm!r0",r0" = %!r0,r0" . !21"

This leads to the following relation between rm!r0" and
r0:

rm
2 − r0

2 = %nba2

r0
2 + 1&r0

2 ln
rm

2

r0
2 . !22"

Rewriting this equation by normalizing the radius to a,
r̄m=rm /a and r̄0=r0 /a, gives

r̄m
2 − r̄0

2 = %nb

r̄0
2 + 1&r̄0

2 ln
r̄m

2

r̄0
2 . !23"

For the noncrossing assumption to be valid, we need
r̄m!r̄0" to be a monotonically increasing function of r̄0, this is
equivalent to dr̄m /dr̄0"0. By differentiating the above equa-
tion we can get

dr̄m

dr̄0
=

r̄m

r̄0
%ln

r̄m
2

r̄0
2 −

nb

r̄0
2&%ln

r̄m
2

r̄0
2 −

nb

r̄0
2 +

nb

r̄0
2 ln

r̄m
2

r̄0
2 &−1

. !24"

There is no particle crossing for sufficiently large r̄0
since dr̄m /dr̄0→1 as r̄0→&. We see that for ln r̄m

2 / r̄0
2

=nb / r̄0
2 we have dr̄m /dr̄0=0, which defines the onset of par-

ticle crossing. We denote this critical r̄0 as r̄0m. Combined
with the above equation, this gives r̄0m and r̄m!r̄0m" for a
given nb. We find that u'nb / r̄0m

2 satisfies the following
equation:

exp!u" − 1 = u!u + 1" . !25"

This equation has a nonzero solution u0=1.7933. Corre-
spondingly, r̄0m=0.747$nb and r̄m!r̄0m"=1.831$nb. In our
analysis r̄0$1, therefore only when nb$1.792 can particle
crossing be possible. We can verify that at this r̄0m, r̄m is a
minimum by checking if d2r̄m /dr̄0

2"0. Differentiating Eq.
!24" we get

d2r̄m

dr̄0
2 =

2r̄mr̄0
2

nb
2 %nb

r̄0
2 − 1& , !26"

which is obviously greater than 0, since we have nb / r̄0m
2

=1.7933.
For r0'a, a similar calculation can be carried out by

taking into account the kinetic energy of the particle when it
reaches r=a. Some particles very close to the axis will not
reach r=a; for example, the particle with r0=0 will just go
through the beam without any deflection. This is very similar
to an unstable equilibrium, where every trajectory with an
initial r0 slightly different than 0 will leave the equilibrium
very quickly.

It turns out that for a beam density smaller than a critical
density !surprisingly the same value nb=1.792", rm!r0" is a
monotonically increasing function. Assuming r0'a, then for
nb"1.792, rm!r0" !r0'a" will have a local maximum at

FIG. 2. !Color online" Plots of trajectories for electrons at different initial
radial position for an electron beam driver with kp#r=0.01, kp#z=$2, the
beam center !0=5, and with !a" nb0=1, !b" nb0=10.

056709-5 A nonlinear theory for multidimensional¼ Phys. Plasmas 13, 056709 !2006"
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Lu et al., PoP 13, 056709 (2006)

Linear : no crossing

Nonlinear : crossing

Relativistic blowout: plasma electrons are 
in it ial ly pushed forward instead of 
backward as observed in linear and 
nonlinear 1D regimes. This is due to the 

 force that can overcome the 
decelerating field.

⃗v × ⃗B

Nonlinear plasma wakefield - electron driver

Xu et al., PRL 126, 094801 (2021)

https://doi.org/10.1063/1.2203364
https://doi.org/10.1103/PhysRevLett.126.094801


An example of phenomenological model for the blowout regime:

Two coupled systems:

- the electron sheath circulating around the 
blowout cavity, described by a trajectory  that 
depends on the fields

- the fields that depend on the source terms which 
can be expressed from  using Maxwell.

rb(ξ)

rb(ξ)

Nonlinear plasma wakefield - electron driver

Lu et al., PoP 13, 056709 (2006)

Lu et al., PRL 96, 165002 (2006)

Three parts in the plasma:

- the blowout cavity

- the electron sheath 
- the plasma outside, for which the response is nearly linear (weak density perturbation) 
and extends transversely over a plasma skin depth

Using pseudo-potential , we have:ψ = ϕ − cAz

Note:  is very useful for the electron beam 
dynamics as

ψ

F∥ = − eEz = e∇∥ψ

F⊥ = − e(Er − cBθ) = − eW = e∇⊥ψ

It thus determines both the longitudinal and 
transverse wakefields.

∇2
⊥ψ = − (ρ − jz /c)/ϵ0

γmc2 − pzc = mc2 + eψ

2D Poisson-like equation

Conserved quantity for a 
plasma electron in QSA

https://doi.org/10.1063/1.2203364
http://dx.doi.org/10.1103/PhysRevLett.96.165002


An example of phenomenological model for the blowout regime:

Nonlinear plasma wakefield - electron driver

Lu et al., PoP 13, 056709 (2006)

Lu et al., PRL 96, 165002 (2006)

Three parts in the plasma:

- the blowout ion cavity

- the electron sheath 
- the plasma outside, for which the response is nearly linear (weak density perturbation) 
and extends transversely over a plasma skin depth

ψ (r = 0,ξ) = ∫
∞

0

dr
r ∫

r

0
r′￼dr′￼(ρ − jz /c)/ϵ0 = {∫

rb

0
+ ∫

rb+Δ

rb

+ ∫
∞

rb+Δ } dr
r ∫

r

0
r′￼dr′￼(ρ − jz /c)/ϵ0 = ψion + ψsheath + ψlinear

ψ̃ion = (kprb)2 /4
ψ̃sheath = small fraction of ψ̃ion

 dominates for nonrelativistic blowout ( ) 

 negligible for relativistic blowout ( )

ψ̃linear kprb ≪ 1
ψ̃linear kprb ≫ 1

 is close to linear scalings for nonrelativistic blowout 
 has completely different scalings for relativistic blowout

Ez = − ∂zψ
Ez = − ∂zψ

⟹

https://doi.org/10.1063/1.2203364
http://dx.doi.org/10.1103/PhysRevLett.96.165002


An example of phenomenological model for the blowout regime:

Nonlinear plasma wakefield - electron driver

Lu et al., PoP 13, 056709 (2006)

Lu et al., PRL 96, 165002 (2006)

In the ultrarelativistic blowout, the coupled sheath-field system simplifies to a single 
differential equation on :rb(ξ)

 with λ(ξ) = k2
p ∫

+∞

0
rdr nb(ξ, r)/n0

rb
d2rb

dξ2
+ 2 [ drb

dξ ]
2

+ 1 =
4λ(ξ)
k2

pr2
b

Ez(r = 0,ξ) = −
1
2

kprb
drb

dξ
E0

kpRb = 2 Λ
For moderately-long beam,  can be found by balancing 
the repulsing beam space-charge force and the restoring wakefield 
force, or by assuming   in the equation above.

Rb = max rb

λ(ξ) = Λ = const

https://doi.org/10.1063/1.2203364
http://dx.doi.org/10.1103/PhysRevLett.96.165002


Nonlinear plasma wakefield - electron driver

Key properties of the blowout regime:

The blowout regime has 
ideal field properties for e-:

E/E0 =
1
2

kpξ ez +
1
4

kpr er

cB/E0 = −
1
4

kpr eθ

Fr = − e(Er − cBθ) = −
eE0kp

2
r

EM fields inside cavity:

Transverse force 
experienced by an e-:

beam loading allow for high 
efficiency, flat Ez field and 
therefore low energy spread.

Additional properties:

∂ξFr = 0 ∂rFz = 0

Focusing force 
linear in r

emittance preservation is 
expected to be achievable.

most studied regime for 
electron acceleration, in 
both LWFA and PWFA.

hosing instability may be 
an important limitation for 
collider beam parameters.

ion motion may lead to 
emittance growth.

Clayton et al., Nat Comm 7, 12483 (2016)

http://dx.doi.org/10.1038/ncomms12483


Nonlinear plasma wakefield - electron driver

Key properties of the blowout regime:

Experimental data in the blowout regime: 


confirmed that the radial force is uniform 
longitudinally within 3% accuracy

∂ξFr ≃ 0

Panofsky-Wenzel theorem:

∂rFz = ∂ξFr

⟹ ∂rFz ≃ 0

Clayton et al., Nat Comm 7, 12483 (2016)

http://dx.doi.org/10.1038/ncomms12483


moving to the two-bunch configuration…



The two-bunch configuration

How do we accelerate a beam? 
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The two-bunch configuration

Why using a beam to accelerate a beam?   
 

We already have the beam… +	

+	

+	 +	
+	+	
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Trailing 
electron bunch

Drive electron 
bunch

Plasma
(neutral)

Plasma electron 
sheath
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Ion cavity
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+	
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+	

ENERGY ENERGY

Ez	

0	

• The drive beam provides the energy to the plasma, does not necessarily need to be of 
extremely high quality. Advantage: efficiency of RF accelerators.


• The drive particles can have a reasonable energy, e.g. 1 or 10 GeV, which is reasonable for RF 
accelerators, while the main trailing beam could go to much higher energy (because of high 
transformer ratio and/or multistage). The energy of many drive beams can be transferred to a 
single trailing bunch.


• Beam-driven wakefields are dephasingless, and very stable over large propagation distances.

• For a brightness transformer: generate a high-brightness beam from a low-brightness one.

• proton drivers: can be multi-bunch (e.g. after self-modulation)

• advantage: enormous amount of energy stored into a high-energy proton beams, so that a 

trailing electron bunch could be accelerated to very high energy in a single stage 

Alternative? 



The two-bunch configuration

Litos et al., Nature 515, 92 (2014)

Examples of experimental results (blowout and/or two-bunch and/or multi-
bunch): 
 
not exhaustive!

➢ Two-bunch PWFA demonstrated with GeV-scale 
energy gain and acceleration gradient of ~5 GeV/m 

➢ 20% energy efficiency from plasma to trailing bunch

https://doi.org/10.1038/nature13882


The two-bunch configuration

Examples of experimental results (blowout and/or two-bunch and/or multi-
bunch):

Lindstrøm et al., PRL 126, 014801 (2021)

➢ 45 MeV energy gain with acceleration gradient of 
~1.3 GeV/m


➢ 100% charge coupling and per-mile energy-spread 
preservation 

➢ 42% energy efficiency from plasma to trailing bunch


➢ 2.8% field variation across 60 um of the trailing bunch

https://doi.org/10.1103/PhysRevLett.126.014801


The two-bunch AWAKE configuration

Adli 2018

Examples of experimental results (blowout and/or two-bunch and/or multi-
bunch):

Adli et al., Nature 561, 363 (2018)

➢ 400 GeV proton driver is self-modulated into microbunches in a 10-m-long Rb plasma


➢ 20 MeV electrons injected with a small angle into the plasma wakefield 

➢ Observation of electron acceleration up to 2 GeV for a small fraction of the initial charge

https://doi.org/10.1038/s41586-018-0485-4


The two-bunch configuration

Examples of experimental results (blowout and/or two-bunch and/or multi-
bunch):

Foerster et al., PRX 12, 041016 (2022)

Staging LWFA and PWFA and 
injecting a new beam in the 
PWFA stage, thus forming a 
two-bunch configuration

Direct observation of beam-driven plasma waves

from 5 to 7 pC MeV−1 μsr−1 from 0.4 to 6 pC MeV−1 μsr−1

Experimental proof-of-principle 
demonstration of a brightness transformer:


angular-spectral charge density beyond 
the initial drive beam parameters 

https://doi.org/10.1103/PhysRevX.12.041016


Basic concepts for particle 
beam evolution in plasma



Envelope equation and matching

➢ We assume a linear transverse focusing force (can be an approximation, or be exact for 
blowout with immobile ions):

d
dt (γme

dx
dt ) = Fx ≃ − gx

➢ Assuming no acceleration, we have for individual beam particles:

⟹
d2x
dz2

= − k2
β x with kβ = g/γmec2

➢ From the single-particle equation of motion, we get:

Transverse dynamics of a single beam particle

Fx ≃ − gx  with  the gradient of the focusing force, g

 Example for the blowout: g =
eE0kp

2
=

1
2

meω2
p

for the blowout: kβ = kp / 2γ
Transverse dynamics of the whole beam

➢ Twiss or Courant-Snyder parameters as beam moments in the trace space ( ):x, x′￼= px /pz

ε = ⟨x2⟩⟨x′￼2⟩ − ⟨xx′￼⟩2

α = − ⟨xx′￼⟩/ε

β = ⟨x2⟩/ε

γtwiss = ⟨x′￼2⟩/ε = (1 + α2)/β

dβ
dz

= − 2α

dα
dz

= −
1 + α2

β
+ k2

β β d2σx

dz2
= − k2

βσx +
ε2

σ3
x

and with σx = ⟨x2⟩ = εβ

envelope equation 



Envelope equation and matching

➢ If the focusing term is not balanced by the emittance term, we observe betatron envelope 
oscillations, the beam is said to be mismatched to the plasma.

mismatched

not good because:

envelope oscillates at twice the 
frequency of single-particle 

betatron oscillations

in the presence of energy spread

in the presence of nonlinearities in focusing force



Envelope equation and matching

➢ The beam is said to be matched in the absence of beam envelope oscillations, which 
represents the best conditions for quality preservation. When neglecting variation in energy 
and density, this corresponds to  and thus:σx = const

d2σx

dz2
= 0 ⟹ − k2

βσx +
ε2

σ3
x

= 0

matched

no envelope oscillations ⟹ k2
βσ4

x = ϵ2 ⟹ βmatched =
σ2

x

ϵ
= 1/kβ

dσx

dz
= 0 ⟹ αmatched = 0



Thank you for your attention


