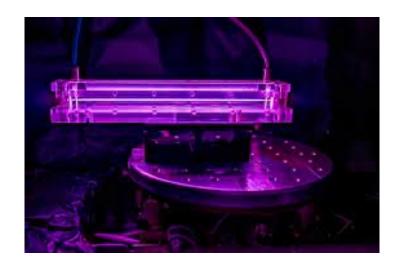
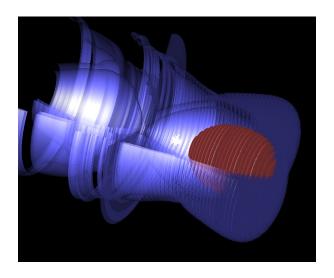


Numerical simulations of plasmas: motivations

- Typical needs for modelling:
 - Designing future experiments:
 e.g. quantitative estimate of beam properties
 - Interpreting existing experiments esp. with limited diagnostics
- Analytical models are key to our understanding, but cannot always capture all relevant phenomena, e.g.
 - Exact fields in the bubble regime
 - Non-linear focusing of complex lasers in plasmas
 - •
- Thus, in many cases, numerical simulations are needed.





Overview

Modeling plasma accelerators I: "Full" Electromagnetic Particle-In-Cell codes

- Fundamental equations for plasma accelerators
- The electromagnetic Particle-In-Cell (PIC) algorithm
- Discretizing the field and particle equations

ACCELERATOR TECHNOLOGY & A T

Parallelization of PIC codes

Modeling plasma accelerators II: Making the simulations faster

- The boosted-frame technique
- Cylindrical geometry
- Laser envelope model
- Quasi-static PIC codes

Outline

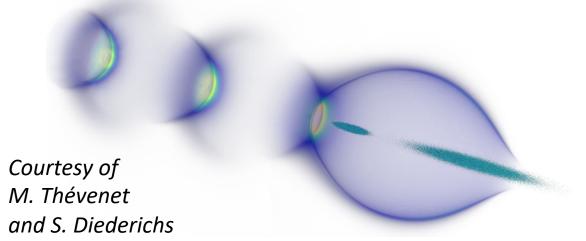
- Fundamental equations for plasma accelerators
- The electromagnetic Particle-In-Cell (PIC) algorithm
- Discretizing the field and particle equations
- Parallelization of PIC codes

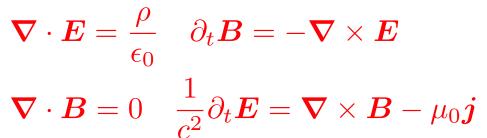
Which fundamental equations capture the physics of beam-driven plasma acceleration?

The driver beam creates strong E and B fields ("space-charge fields")

Maxwell's equations

- These fields displace the background plasma particles.
- The displaced plasma particles generate E and B fields behind the driver (the "wakefield")
- The wakefield accelerates the witness beam (and decelerates the driver beam).





$$oldsymbol{
abla} \cdot oldsymbol{B} = 0 \quad rac{1}{c^2} \partial_t oldsymbol{E} = oldsymbol{
abla} imes oldsymbol{B} - \mu_0 oldsymbol{j}$$

Relativistic equations of motion, with Lorentz force

$$egin{aligned} rac{d\,oldsymbol{p}}{dt} &= q(oldsymbol{E} + oldsymbol{v} imes oldsymbol{B}) \ rac{d\,oldsymbol{x}}{dt} &= oldsymbol{v} & \left(oldsymbol{p} = rac{moldsymbol{v}}{\sqrt{1 - oldsymbol{v}^2/c^2}}
ight) \end{aligned}$$

Which fundamental equations capture the physics of beam-driven plasma acceleration?

Maxwell's equations

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0} \quad \partial_t oldsymbol{B} = -oldsymbol{
abla} imes oldsymbol{E}$$

$$abla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \boldsymbol{B} = -\boldsymbol{\nabla} \times \boldsymbol{E}$$

$$abla \cdot \boldsymbol{B} = 0 \quad \frac{1}{c^2} \partial_t \boldsymbol{E} = \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 \boldsymbol{j}$$

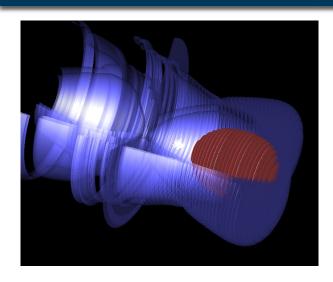
- ρ , j: contains the contributions from the **driver and** witness beam and the plasma particles
- E, B: contains superposition of the space-charge field from the driver and witness beam, and the wakefield from the plasma particles.

Relativistic equations of motion, with Lorentz force

$$egin{aligned} rac{d\,oldsymbol{p}}{dt} &= q(oldsymbol{E} + oldsymbol{v} imes oldsymbol{B}) \ rac{d\,oldsymbol{x}}{dt} &= oldsymbol{v} & \left(oldsymbol{p} = rac{moldsymbol{v}}{\sqrt{1 - oldsymbol{v}^2/c^2}}
ight) \end{aligned}$$

Is applied to every particles of the driver and witness beam as well as the plasma particles

Which fundamental equations capture the physics of laser-driven plasma acceleration?



- The laser pulse is an electromagnetic wave (oscillating E and B field)
- The net effect of the oscillating E and B is to displace the plasma particles ("ponderomotive force")
- The displaced plasma particles generate E and B fields behind the driver (the "wakefield")
- The wakefield accelerates the witness beam (and decelerates the driver beam).
- The laser pulse evolves as it propagates through the plasma.

Maxwell's equations

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0} \quad \partial_t oldsymbol{B} = -oldsymbol{
abla} imes oldsymbol{E}$$

$$abla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \boldsymbol{B} = -\boldsymbol{\nabla} \times \boldsymbol{E}$$

$$abla \cdot \boldsymbol{B} = 0 \quad \frac{1}{c^2} \partial_t \boldsymbol{E} = \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 \boldsymbol{j}$$

Relativistic equations of motion, with Lorentz force

$$egin{aligned} rac{d\,oldsymbol{p}}{dt} &= q(oldsymbol{E} + oldsymbol{v} imes oldsymbol{B}) \ rac{d\,oldsymbol{x}}{dt} &= oldsymbol{v} & \left(oldsymbol{p} = rac{moldsymbol{v}}{\sqrt{1 - oldsymbol{v}^2/c^2}}
ight) \end{aligned}$$

Which fundamental equations capture the physics of laser-driven plasma acceleration?

Maxwell's equations

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0} \quad \partial_t oldsymbol{B} = -oldsymbol{
abla} imes oldsymbol{E}$$

$$m{
abla} \cdot m{E} = rac{
ho}{\epsilon_0} \quad \partial_t m{B} = -m{
abla} \times m{E}$$
 $m{
abla} \cdot m{B} = 0 \quad rac{1}{c^2} \partial_t m{E} = m{
abla} \times m{B} - \mu_0 m{j}$

- ρ , j: contains the contributions from the witness beam and the plasma particles
- E, B: contains superposition of the laser **electromagnetic field**, the wakefield from the **plasma particles**, and the space charge field from the witness beam

Relativistic equations of motion, with Lorentz force

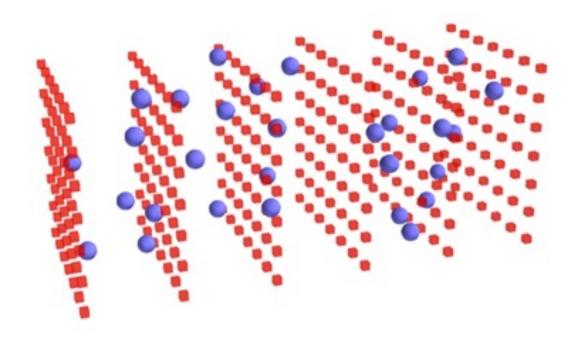
$$egin{align} rac{d\,oldsymbol{p}}{dt} &= q(oldsymbol{E} + oldsymbol{v} imes oldsymbol{B}) \ rac{d\,oldsymbol{x}}{dt} &= oldsymbol{v} \qquad \left(oldsymbol{p} = rac{moldsymbol{v}}{\sqrt{1 - oldsymbol{v}^2/c^2}}
ight) \end{aligned}$$

Is applied to every particles of the witness beam as well as the plasma particles

Outline

- Fundamental equations for plasma accelerators
- The electromagnetic Particle-In-Cell (PIC) algorithm
- Discretizing the field and particle equations
- Parallelization of PIC codes

The fields and particles are represented in different ways.



The E and B fields are represented on a grid (standard way to solve PDEs).

The beam and plasma particles are represented by discrete particles, that move through the grid.

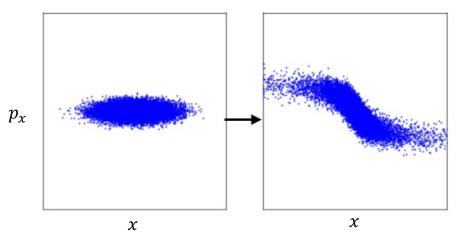
The plasma and beams are actually represented by "macroparticles".

- Typical beams : $\sim 10^8 10^{10}$ particles. $(100 \ \mu m)^3$ of plasma at $10^{18} \ cm^{-3}$: 10^{12} particles. \Rightarrow It is too computationally expensive to represent and track every single physical particle!
- In practice, particles that are initially close in 6D phase space follow similar trajectories.
- Simulations use macroparticles, which represent several physical particles that are close in phase space.

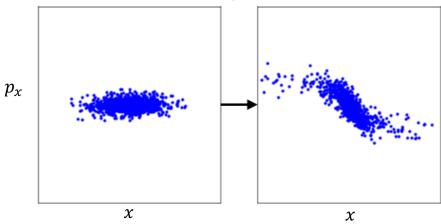
Each macroparticle is characterized by its:

- Position x
- Momentum p
- "Weight" w (= how many physical particles it represents)

Physical particles

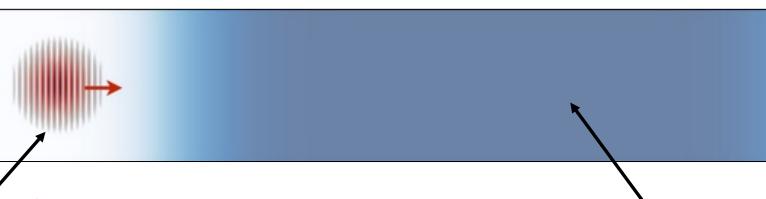


Macroparticles



The workflow of Particle-In-Cell simulation: initialization

1. Initialize the plasma and laser at t=0



Laser pulse

E and B fields can be initialized on the grid using known analytical formula e.g. Gaussian pulse:

$$E \propto a_0 \exp\left(-\frac{z-z_0}{c\tau} - \frac{x^2 + y^2}{w_0}\right) \cos\left(\frac{2\pi}{\lambda}z\right)$$

Plasma macroparticles

(neutral plasma, usually initialized at rest)

Simulation box

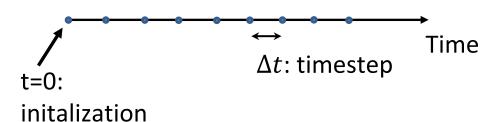
$$E = 0, B = 0$$

Note: another popular method is to emit the laser **continuously throughout the simulation**, from one of the boundaries or from an "antenna"

The workflow of Particle-In-Cell simulation: time evolution

1. Initialize the plasma and laser at t=0

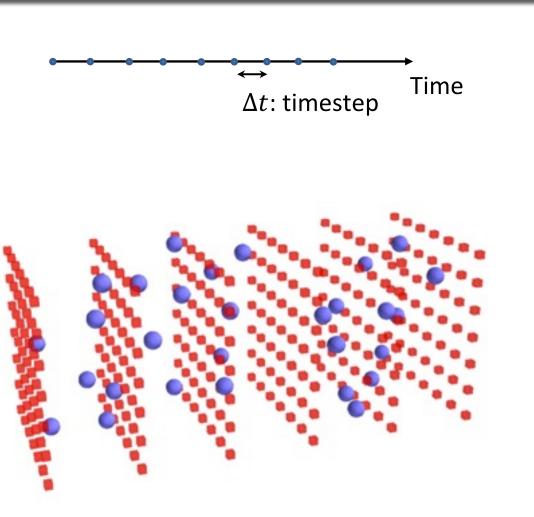
2. Repeatedly update the fields and particles, in discrete timesteps using a discretized version of the Maxwell equations and equations of motion



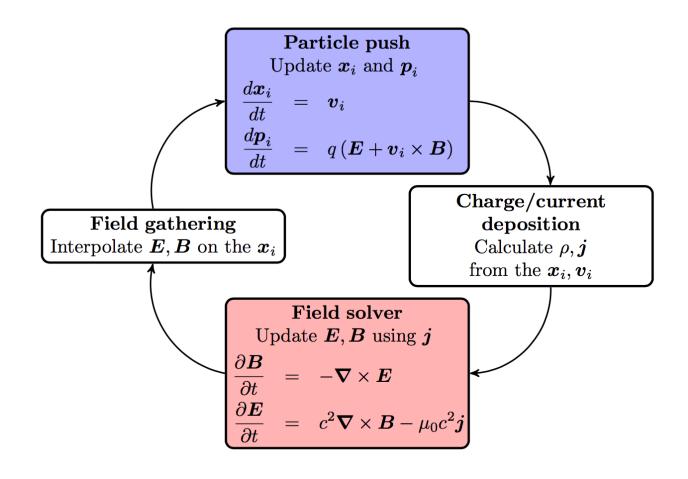
$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$
$$\partial_t \mathbf{E} = c^2 \nabla \times \mathbf{B} - \mu_0 c^2 \mathbf{j}$$

$$egin{aligned} \partial_t oldsymbol{B} &= -oldsymbol{
abla} imes oldsymbol{E} \end{aligned} egin{aligned} &rac{d\,oldsymbol{p}}{dt} = q(oldsymbol{E} + oldsymbol{v} imes oldsymbol{B} \end{aligned} \\ \partial_t oldsymbol{E} &= c^2 oldsymbol{
abla} imes oldsymbol{B} - \mu_0 c^2 oldsymbol{j} \end{aligned} egin{aligned} &rac{d\,oldsymbol{x}}{dt} = oldsymbol{v} \end{aligned} egin{aligned} &oldsymbol{p} = rac{moldsymbol{v}}{\sqrt{1 - oldsymbol{v}^2/c^2}} \end{aligned}$$

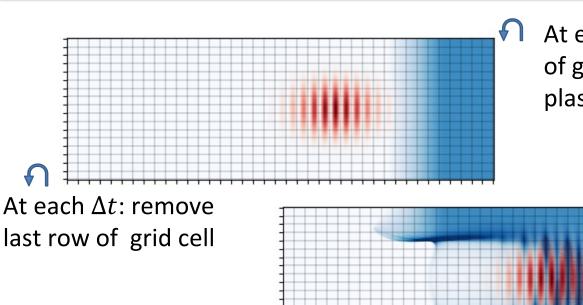
The time evolution of particles and fields is computed over discrete timesteps, using the PIC loop



At each Δt : one iteration of the following loop

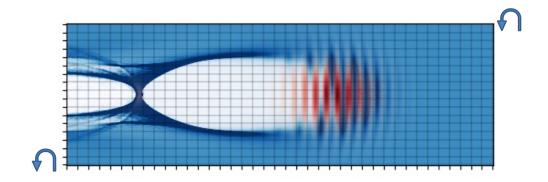


Instead of having the simulation box cover the whole plasma, PIC simulations often use a moving window



At each Δt : add a new row of grid cells, filled with fresh plasma macroparticles

Note: the grid cells are not drawn to scale. (They should be much finer, to resolve the laser wavelength.)



Ensuring that $\nabla \cdot B = 0$

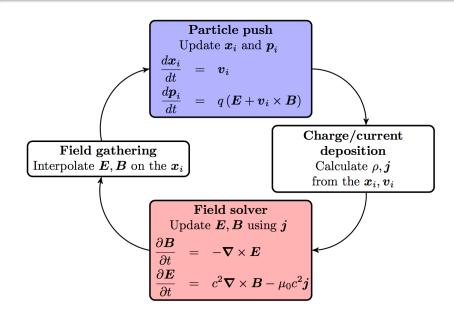
- The PIC loop only uses 2 out of the 4 Maxwell equations. How do we ensure that $\nabla \cdot \mathbf{B} = 0$?
- For the continuous Maxwell equations:

•
$$\nabla \cdot \mathbf{B} = 0$$
 at $\mathbf{t} = \mathbf{0}$

• \boldsymbol{B} evolves according to: $\partial_t \boldsymbol{B} = - \boldsymbol{\nabla} \times \boldsymbol{E}$

$$\Longrightarrow$$

$$\nabla \cdot \mathbf{B} = 0$$
 at any \mathbf{t}



- This remains true for the discretized Maxwell equations.
 (with the most common discretization schemes)
- It is therefore important to ensure $oldsymbol{
 abla} \cdot oldsymbol{B} = 0$ in the simulation box, when **initializing** the simulation

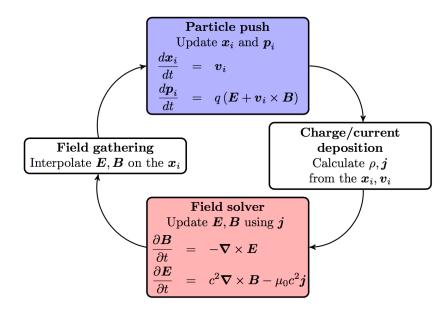
Ensuring that $\nabla \cdot E = \rho / \epsilon_0$

- The PIC loop only uses 2 out of the 4 Maxwell equations. How do we ensure that $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$?
- For the continuous Maxwell equations:

•
$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$
 at $\mathbf{t} = \mathbf{0}$

- E evolves according to: $\partial_t E = c^2 \nabla \times B - \mu_0 c^2 i$
- \boldsymbol{j}, ρ satisfy: $\partial_t \rho + \boldsymbol{\nabla} \cdot \boldsymbol{j} = 0$

$$\Rightarrow \nabla \cdot \mathbf{E} = \rho/\epsilon_0$$
 at any \mathbf{t}

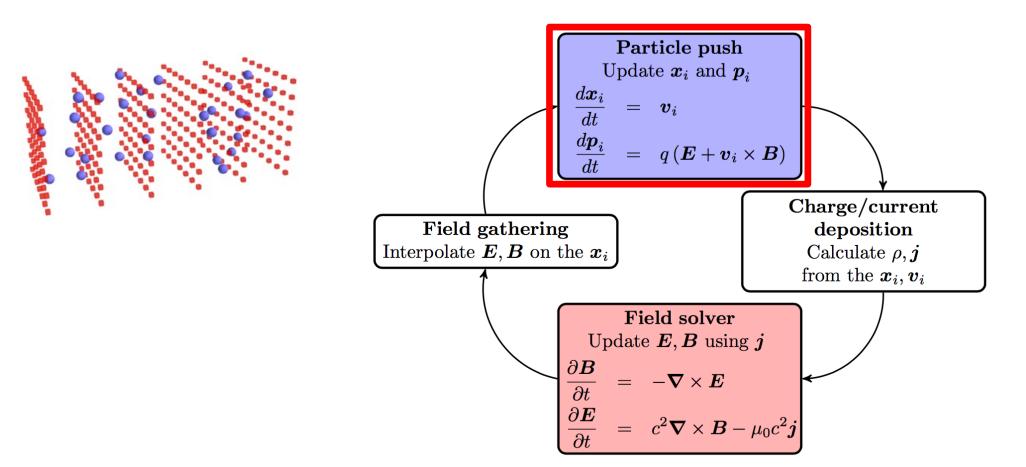


- This remains true for the discretized Maxwell equations (with the most common discretization schemes).
- However, making sure that the deposited $m{j}$, ho satisfy $\partial_t
 ho + m{
 abla} \cdot m{j} = 0$ is not trivial!

Outline

- Fundamental equations for plasma accelerators
- The electromagnetic Particle-In-Cell (PIC) algorithm
- Discretizing the field and particle equations
- Parallelization of PIC codes

Discretizing the field and particle equations



Discretizing the equations of motion: derivatives are replaced by finite-difference approximations

Continuous equation:

$$\frac{d\,\boldsymbol{x}}{dt} = \boldsymbol{v}$$

Discretized equation:

$$\frac{\boldsymbol{x}^{new} - \boldsymbol{x}^{old}}{\Delta t} = \boldsymbol{v}$$

i.e.
$$oldsymbol{x}^{new} = oldsymbol{x}^{old} + oldsymbol{v} \Delta t$$

Discretizing the equations of motion: derivatives are replaced by finite-difference approximations

Continuous equation:

$$rac{d\,m{p}}{dt} = q(m{E} + m{v} imes m{B})$$

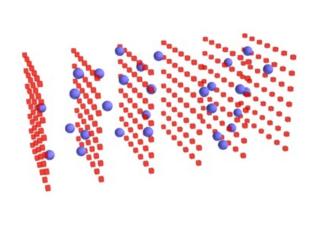
Discretized equation:

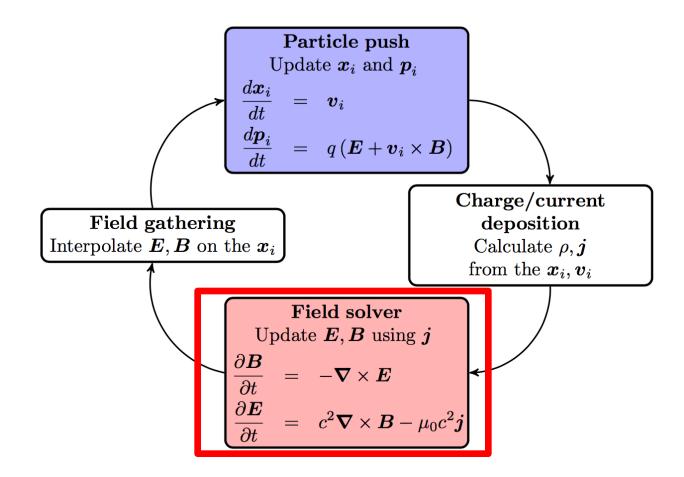
$$\frac{d\mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \qquad \frac{\mathbf{p}^{new} - \mathbf{p}^{old}}{\Delta t} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \qquad \left(\mathbf{p} = \frac{m\mathbf{v}}{\sqrt{1 - \mathbf{v}^2/c^2}}\right)$$

$$\left(oldsymbol{p} = rac{moldsymbol{v}}{\sqrt{1 - oldsymbol{v}^2/c^2}}
ight)$$

Different algorithms exists (e.g. Boris, Vay, Higuera-Cary, ...) depending on the details of how the term $v \times B$ is treated.

Discretizing the field and particle equations





Discretizing the Maxwell equations: derivatives are replaced by finite-difference approximations

Continuous equation:

$$\frac{\partial \boldsymbol{B}}{\partial t} = -\boldsymbol{\nabla} \times \boldsymbol{E}$$

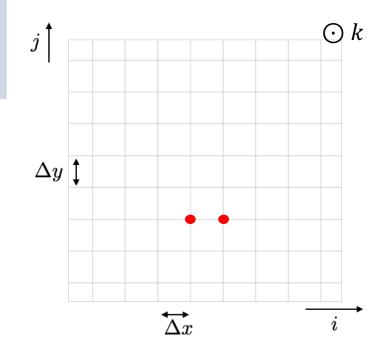
Discretized equation:

$$rac{m{B}^{new}-m{B}^{old}}{\Delta t}=-\hat{m{
abla}} imesm{E}$$
 i.e. $m{B}^{new}=m{B}^{old}-\Delta t\,\hat{m{
abla}} imesm{E}$

i.e.
$$oldsymbol{B}^{new} = oldsymbol{B}^{old} - \Delta t \, \hat{oldsymbol{
abla}} imes oldsymbol{E}$$

 $\hat{\mathbf{\nabla}}$: discretized spatial derivative

e.g.
$$\hat{\partial}_x oldsymbol{E} = rac{oldsymbol{E}_{i+1,j,k} - oldsymbol{E}_{i,j,k}}{\Delta x}$$



(In practice, the components of E and B are staggered in time and space in order to increase the accuracy of this discretization.)

 Δx , Δy , Δz : cell size

Discretizing the Maxwell equations: derivatives are replaced by finite-difference approximations

Continuous equation:

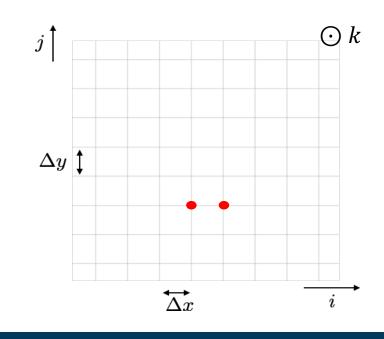
$$\frac{\partial \boldsymbol{E}}{\partial t} = c^2 \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 c^2 \boldsymbol{j}$$

Discretized equation:

$$\frac{\boldsymbol{E}^{new} - \boldsymbol{E}^{old}}{\Delta t} = c^2 \hat{\boldsymbol{\nabla}} \times \boldsymbol{B} - \mu_0 c^2 \boldsymbol{j}$$

i.e.
$$m{E}^{new} = m{E}^{old} + \Delta t\,c^2\hat{m{
abla}} imes m{B} - \Delta t\,\mu_0c^2m{j}$$

- This discretization scheme is called the **Yee scheme**.
- Other discretization schemes are also commonly used (e.g. using more points on the grid to evaluate the finite-difference spatial derivative)



Resolution requirement: beam-driven acceleration

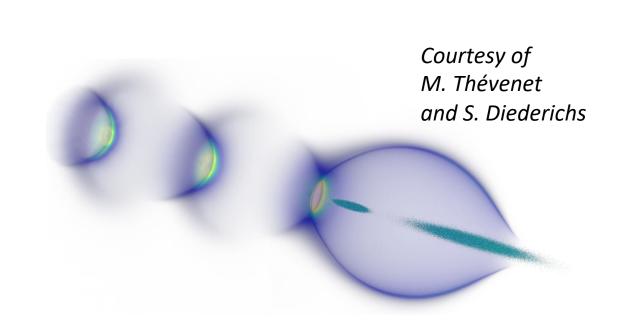
• Linear regime:

 Δx , Δy , Δz should be much **smaller** than λ_p and the beam(s) size

Nonlinear regime:

 Δx , Δy , Δz may need to be **smaller** than the thin sheath along the bubble

• If in doubt, studying **convergence** with respect to grid size is always a good idea.



Resolution requirement: laser-driven acceleration

Same requirements as for beam-driven, but in addition, Δz needs to be much smaller than the laser wavelength.

e.g.
$$\Delta z \sim rac{\lambda}{40}$$

2

Imposes that the grid be very fine in z!

The CFL limit constrains the timestep Δt .

Courant-Friedrichs-Lewy (CFL) limit

In order for the Yee discretization scheme to be **numerically stable**:

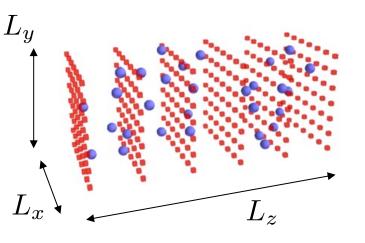
$$\Delta t < \frac{1}{c} \frac{1}{\sqrt{1/\Delta x^2 + 1/\Delta y^2 + 1/\Delta z^2}}$$

(Most other discretization schemes also have a CFL limit.)

For instance:

- For square cells ($\Delta x = \Delta y = \Delta z$): $\Delta t < \frac{\Delta z}{c\sqrt{3}}$
- If $\Delta z \ll \Delta x$, Δy (e.g. laser-driven): $\Delta t < \frac{\Delta z}{c}$

Computational cost rapidly increases with grid resolution.



The number of computational operations scales like:

$$N_{comp} \propto \left(\frac{L_x}{\Delta x}\right) \times \left(\frac{L_y}{\Delta y}\right) \times \left(\frac{L_z}{\Delta z}\right) \quad \times \quad \left(\frac{T_{interaction}}{\Delta t}\right)$$

Number of grid points

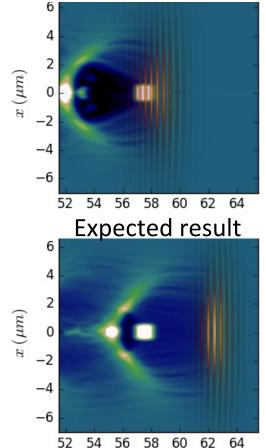
Number of timesteps (i.e. number of iterations of the PIC loop)

$$T_{interaction}$$
 = physical duration of the simulated phenomenon (e.g. time it takes for the driver to propagate through the whole plasma)

Reducing Δx , Δy , Δz by a factor 2 increases the computational cost by a factor 16!

One consequence of using low resolution: spurious numerical dispersion

Yee scheme with low resolution (unphysical)

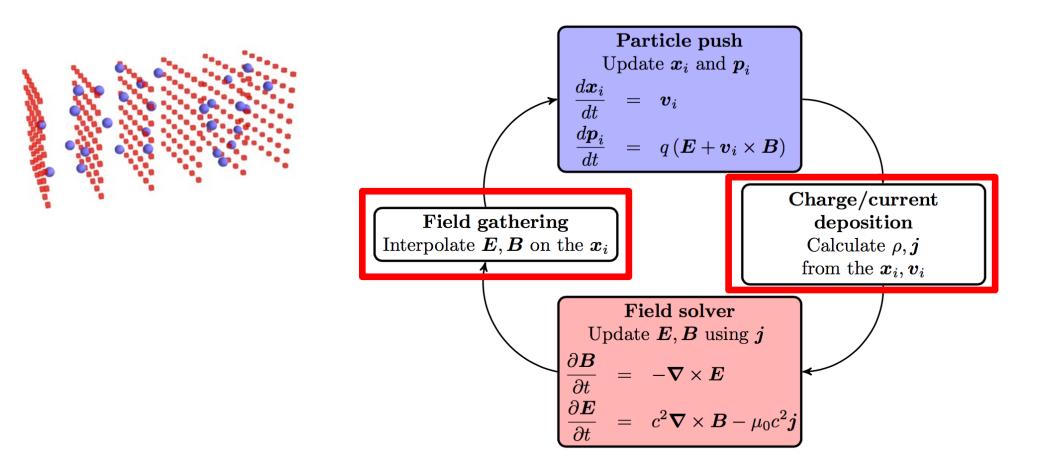


 $z(\mu m)$

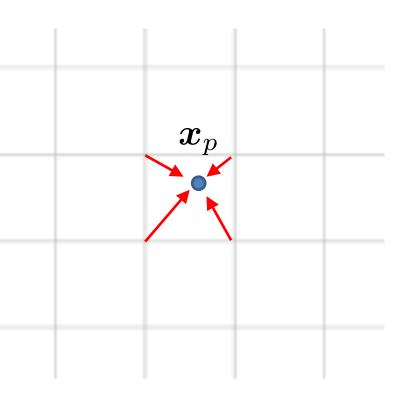
If Δz is not small enough compared to the laser wavelength, the group velocity of the simulated laser pulse may be erroneous. ("spurious numerical dispersion")

(Picking a different discretization scheme than the Yee scheme can mitigate spurious numerical dispersion.)

Discretizing the field and particle equations

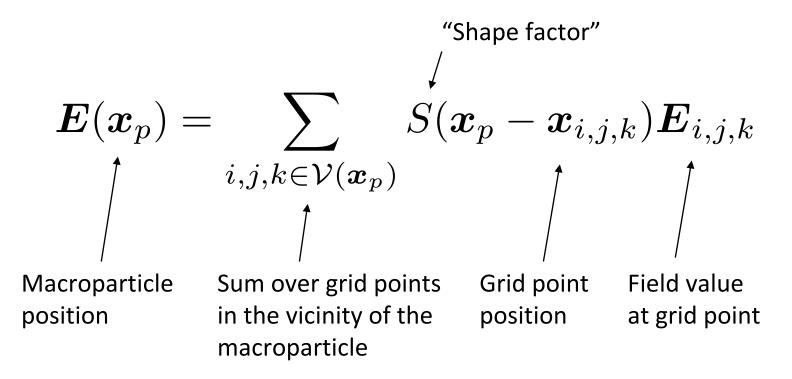


The gathered field is a weighted sum of the field on the grid.



ACCELERATOR TECHNOLOGY & ATA

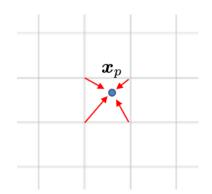
The field felt by a macroparticle is a **weighted sum** of the field at **neighboring grid points**:



Different shape factors are commonly used.

$$\boldsymbol{E}(\boldsymbol{x}_p) = \sum_{i,j,k \in \mathcal{V}(\boldsymbol{x}_p)} S(\boldsymbol{x}_p - \boldsymbol{x}_{i,j,k}) \boldsymbol{E}_{i,j,k}$$

$$S(\boldsymbol{x_p} - \boldsymbol{x}_{i,j,k}) = \hat{S}\left(\frac{x_p - x_i}{\Delta x}\right) \hat{S}\left(\frac{y_p - y_i}{\Delta y}\right) \hat{S}\left(\frac{z_p - z_i}{\Delta z}\right)$$

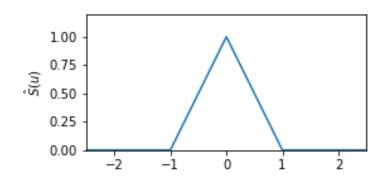


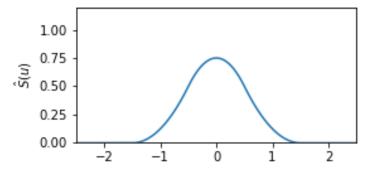
High-order particle shapes are computationally more **expensive** but often lead to **smoother** results.

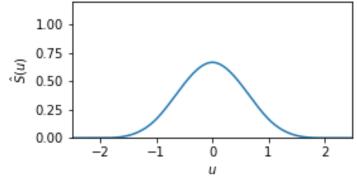
- Linear shape factor
 (a.k.a. "1st order", "CIC")
 involves 2 grid points
 along each direction
- Quadratic shape factor

 (a.k.a. "2nd order", "TSC")
 involves 3 grid points
 along each direction
- Cubic shape factor

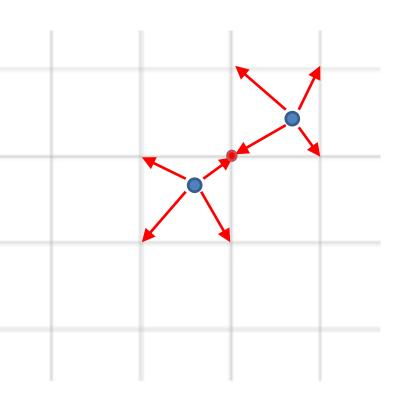
 (a.k.a. "3rd order", "PQS")
 involves 4 grid points
 along each direction



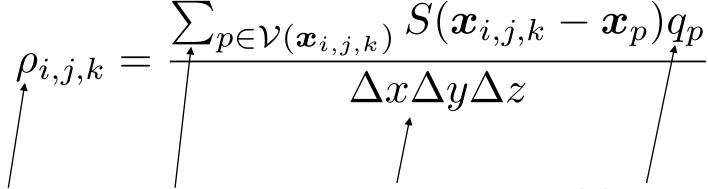




Macroparticles distribute charge/current to neighboring points



Macroparticles distribute their charge to neighboring grid points:



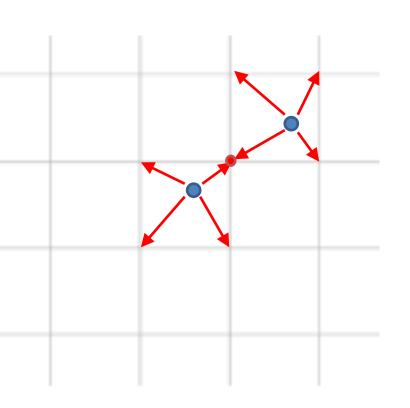
Field value at grid point

Sum over macroparticles in the vicinity of the grid point

Cell volume Total charge of the macroparticle

(takes into account weight)

Macroparticles distribute charge/current to neighboring points



Macroparticles distribute their **current** to neighboring grid points:

$$\boldsymbol{J}_{i,j,k} = \frac{\sum_{p \in \mathcal{V}(\boldsymbol{x}_{i,j,k})} S(\boldsymbol{x}_{i,j,k} - \boldsymbol{x}_p) q_p \boldsymbol{v}_p}{\Delta x \Delta y \Delta z}$$

Note: that are also more advanced deposition schemes for **J** (e.g. Esirkepov scheme), that automatically ensure

$$\partial_t \rho + \boldsymbol{\nabla} \cdot \boldsymbol{J} = 0$$

Outline

- Fundamental equations for plasma accelerators
- The electromagnetic Particle-In-Cell (PIC) algorithm
- Discretizing the field and particle equations
- Parallelization of PIC codes

Full PIC simulations can rapidly be very computationally expensive.

$$N_{comp} \propto \left(\frac{L_x}{\Delta x}\right) \times \left(\frac{L_y}{\Delta y}\right) \times \left(\frac{L_z}{\Delta z}\right) \quad \times \quad \left(\frac{T_{interaction}}{\Delta t}\right)$$

Number of grid points

Number of timesteps (i.e. number of iterations of the PIC loop)

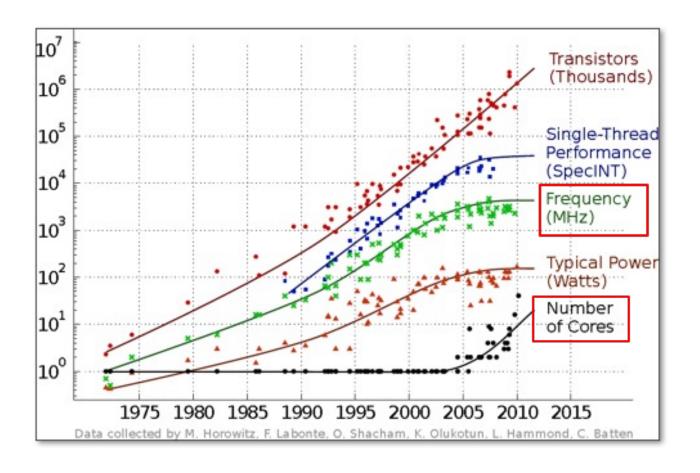
Example: typical 3D laser-wakefield simulation 3D grid with 200 x 200 x 2500 grid points

140,000 timesteps (CFL limit!)

 \Rightarrow ~60,000 hours on 1 core (7 years!)

We need either **faster cores** or **more cores in parallel.**

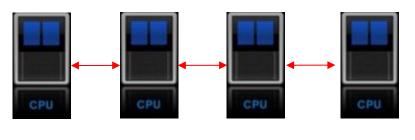
Single-core performance is saturating nowadays.



Nowadays, individual cores do not get faster. We need to use many cores in parallel.

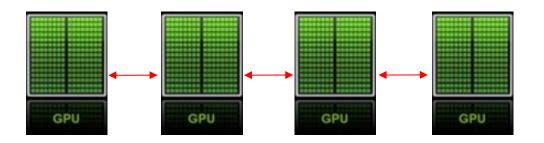
Modern supercomputers are organized in nodes, with multiples cores.

Computational work is parallelized across multiple cores and across multiples nodes.



"Fast" network (~10 Gb/s)

CPUs: tens of cores per node

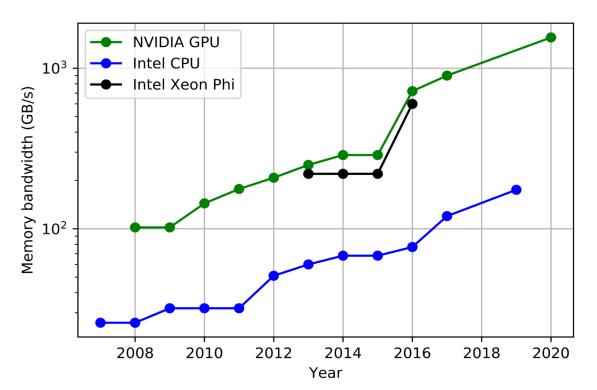


GPUs: thousands of (slow) cores per node

Advantages of GPUs: high memory bandwidth and energy efficiency

Memory bandwidth of different CPU/GPU models

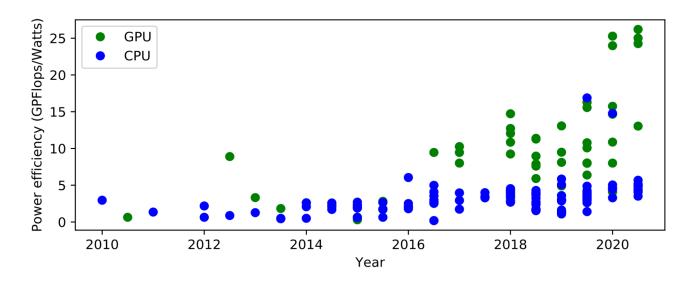
(= how fast can the compute cores fetch data in memory)



Data from github.com/karlrupp/cpu-gpu-mic-comparison

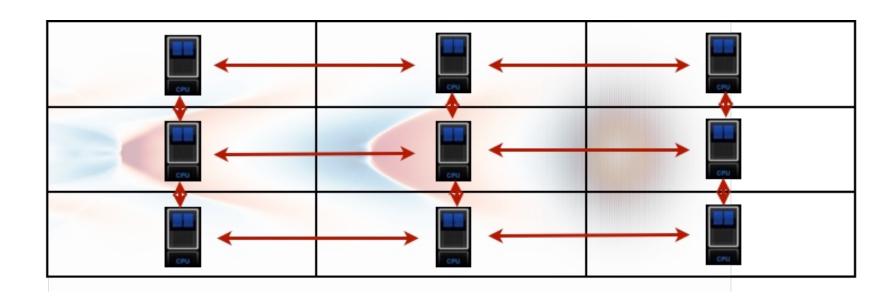
Power efficiency of different supercomputers

(= how much computation per unit of energy consumption)



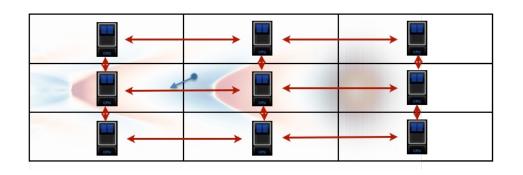
Data from top500.org

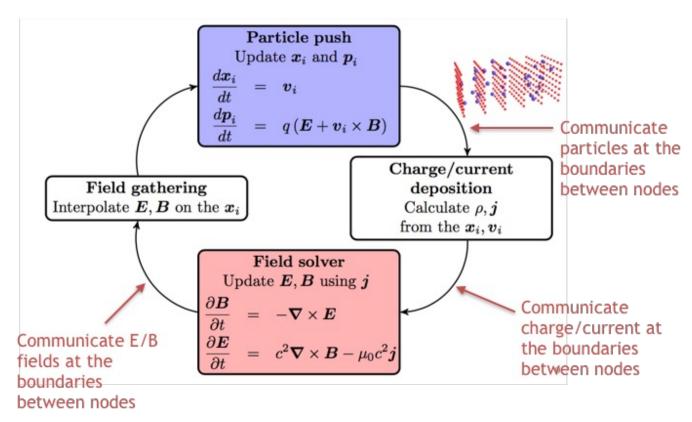
Domain-decomposition: groups of cores handle a fixed chunk of space



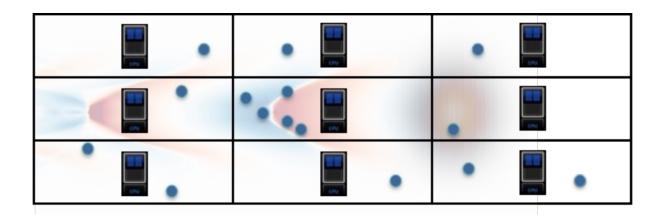
- Groups of cores (e.g. part of a CPU, one full GPU) work together on the same chunk of space (memory is shared among this group)
- Information is exchanged between groups of core over the network (using MPI)

Domain-decomposition: groups of cores handle a fixed chunk of space





Load imbalance can significantly slow down the simulation.

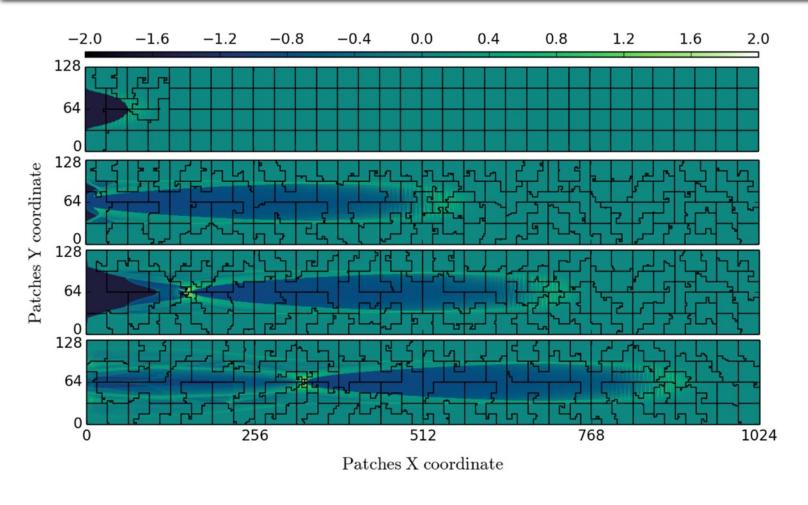


Load imbalance:

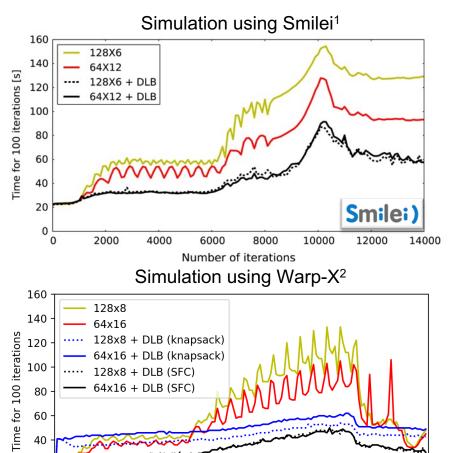
Some groups of cores have many more macroparticles (i.e. more work) than others.

The simulation will always progress at the pace of the slowest group.

Dynamic load-balancing changes the shape of subdomains in order to even out the work load.



- ¹J. Derouillat et al, Comput. Phys. Comm. **222**, 351-373 (2018).
- ²J.-L. Vay et al, Proc. AAC 2018.



Warp-

14000

12000

4000

6000

Number of iterations

8000

10000

2000

Conclusion

• Full electromagnetic PIC codes model the Maxwell equations, along with the equations of motion for plasma and beam particles

Very generic, but the computational cost can be very high.
 (esp. for laser-driven acceleration)

Therefore, simulations often require massively parallel computing architectures.

• Examples of common full electromagnetic PIC codes in our community:

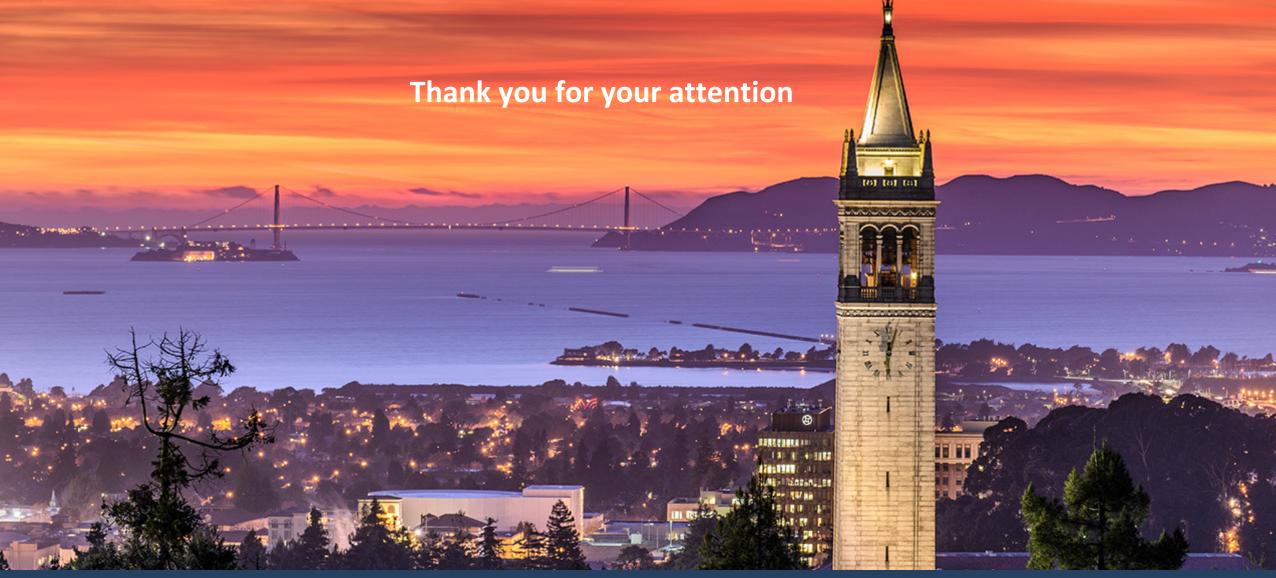
EPOCH OSIRIS Smilei PIConGPU WarpX

Quick announcement: practical exercises

Monday, 6.2.	Tuesday, 7.2.	Wednesday, 8.2.	Thursday, 9.2.	Friday, 10.2.
Breakfast				
Laser-driven plasma acceleration I	Diagnostic techniques I	Laser-driven plasma acceleration II	Diagnostic techniques II	Plasma accelerator applications I
Discussion	Discussion	Discussion	Discussion	Discussion
Coffee & Tea				
Beam-driven plasma acceleration I	Modeling plasma accelerators I	Beam-driven plasma acceleration II	Modeling plasma accelerators II	Plasma accelerator applications II
Discussion	Discussion	Discussion	Discussion	Discussion
Lunch				
High-intensity lasers	Artificial intelligence and controlling acc.		High-average power lasers	
Discussion	Discussion	Excursion	Discussion	
Coffee & Tea			Coffee & Tea	Departure
Poster session I	Poster session II		Practical exercises	Departure
Dinner				
	Special evening talk			

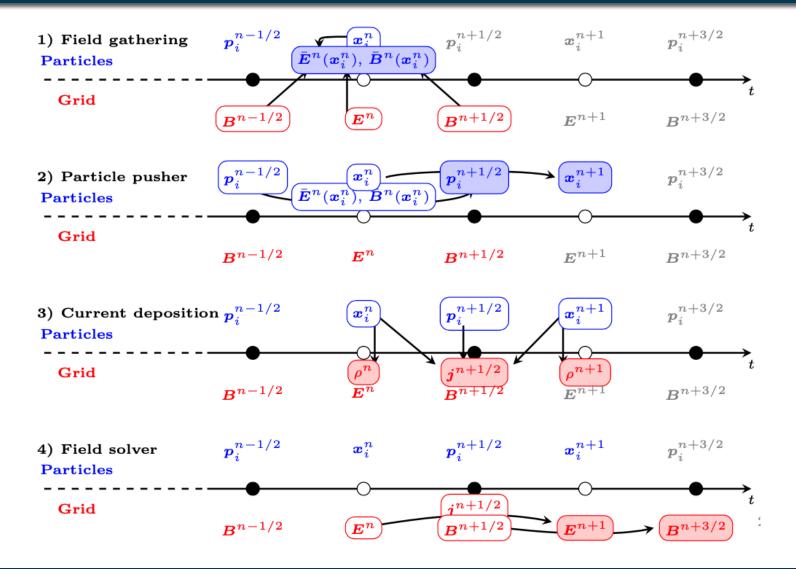
Please make sure you bring your **laptop**, and have an **active Google account**.

We will be using Google Colab. (no need to install anything)



There are multiple open post-doctoral positions at the BELLA Center (theory & experiments). If interested, please visit jobs.lbl.gov and search for "BELLA".

Staggering in time



Staggering in space

