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Numerical simulations of plasmas: motivations

• Typical needs for modelling:

• Analytical models are key to our understanding,
but cannot always capture all relevant phenomena, e.g.

• Thus, in many cases, numerical simulations are needed.

• Designing future experiments:
e.g. quantitative estimate of beam properties

• Interpreting existing experiments
esp. with limited diagnostics

• Exact fields in the bubble regime
• Non-linear focusing of complex lasers in plasmas
• …



Overview

• Fundamental equations for plasma accelerators

• The electromagnetic Particle-In-Cell (PIC) algorithm

• Discretizing the field and particle equations

• Parallelization of PIC codes

Modeling plasma accelerators I:
“Full” Electromagnetic Particle-In-Cell codes

Modeling plasma accelerators II:
Making the simulations faster

• The boosted-frame technique

• Cylindrical geometry

• Laser envelope model

• Quasi-static PIC codes
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• Fundamental equations for plasma accelerators

• The electromagnetic Particle-In-Cell (PIC) algorithm

• Discretizing the field and particle equations

• Parallelization of PIC codes



Which fundamental equations capture 
the physics of beam-driven plasma acceleration?

• The driver beam creates strong E and B fields (“space-charge fields”)

• These fields displace the background plasma particles.

• The displaced plasma particles generate E and B fields 
behind the driver (the “wakefield”)

• The wakefield accelerates the witness beam
(and decelerates the driver beam).

Maxwell’s equations

Relativistic equations of 
motion, with Lorentz force
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Which fundamental equations capture 
the physics of beam-driven plasma acceleration?

Is applied to every particles of the driver and 
witness beam as well as the plasma particles 

𝜌, 𝑗: contains the contributions from the driver and 
witness beam and the plasma particles

𝐸, 𝐵: contains superposition of the space-charge field
from the driver and witness beam, and the wakefield
from the plasma particles.
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Relativistic equations of 
motion, with Lorentz force



Which fundamental equations capture 
the physics of laser-driven plasma acceleration?

• The laser pulse is an 
electromagnetic wave
(oscillating E and B field)

• The net effect of the 
oscillating E and B is to 
displace the plasma particles
(“ponderomotive force”)

Maxwell’s equations

Relativistic equations of 
motion, with Lorentz force
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• The displaced plasma particles generate E and B fields 
behind the driver (the “wakefield”)

• The wakefield accelerates the witness beam
(and decelerates the driver beam).

• The laser pulse evolves as it propagates through the plasma.



Which fundamental equations capture 
the physics of laser-driven plasma acceleration?

Maxwell’s equations
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Relativistic equations of 
motion, with Lorentz force

Is applied to every particles of the witness 
beam as well as the plasma particles 

𝜌, 𝑗: contains the contributions from the
witness beam and the plasma particles

𝐸, 𝐵: contains superposition of the laser 
electromagnetic field, the wakefield
from the plasma particles, and the space 
charge field from the witness beam
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• Fundamental equations for plasma accelerators

• The electromagnetic Particle-In-Cell (PIC) algorithm

• Discretizing the field and particle equations

• Parallelization of PIC codes



The fields and particles are represented in different ways.

The E and B fields are represented on a grid
(standard way to solve PDEs).

The beam and plasma particles are represented by 
discrete particles, that move through the grid.



The plasma and beams are actually represented by “macroparticles”.

• Typical beams : ~10! − 10"# particles.
(100 𝜇𝑚)$ of plasma at 10"! 𝑐𝑚%$: 10"& particles.
⟹ It is too computationally expensive to represent 
and track every single physical particle!

• In practice, particles that are initially close 
in 6D phase space follow similar trajectories.

• Simulations use macroparticles, which represent several 
physical particles that are close in phase space.

Each macroparticle is characterized by its:

• Position x
• Momentum p
• “Weight” w (= how many physical particles it represents)

𝑥 𝑥

𝑥 𝑥

𝑝!
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Macroparticles

Physical particles



The workflow of Particle-In-Cell simulation: initialization

1. Initialize the plasma and laser at t=0

Plasma macroparticles
(neutral plasma, usually initialized at rest)
E = 0, B = 0

Laser pulse
E and B fields can be initialized on 
the grid using known analytical formula
e.g. Gaussian pulse:

Note: another popular method is to emit the laser continuously throughout the 
simulation, from one of the boundaries or from an “antenna” 
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The workflow of Particle-In-Cell simulation: time evolution

1. Initialize the plasma and laser at t=0

2. Repeatedly update the fields and particles, in discrete timesteps
using a discretized version of the Maxwell equations and equations of motion
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The time evolution of particles and fields is computed 
over discrete timesteps, using the PIC loop

At each ∆𝑡 : one iteration of the following loop
Time∆𝑡: timestep



Instead of having the simulation box cover the whole plasma,
PIC simulations often use a moving window

At each ∆𝑡: add a new row 
of grid cells, filled with fresh 
plasma macroparticles

At each ∆𝑡: remove the 
last row of  grid cells

Note: the grid cells
are not drawn to scale.
(They should be much 
finer, to resolve the 
laser wavelength.)



Ensuring that 𝛁 " 𝑩 = 𝟎

• The PIC loop only uses 2 out of the 4 Maxwell equations.
How do we ensure that 𝛁 4 𝑩 = 0?

• For the continuous Maxwell equations:

• 𝛁 4 𝑩 = 0 at t = 0

• 𝑩 evolves according to:
𝜕'𝑩 = - 𝜵×𝑬

𝛁 4 𝑩 = 0 at any t⟹

• This remains true for the discretized Maxwell equations.
(with the most common discretization schemes)

• It is therefore important to ensure 𝛁 4 𝑩 = 0 in the simulation box, when initializing the simulation



Ensuring that 𝛁 " 𝑬 = 𝝆/𝝐𝟎

• The PIC loop only uses 2 out of the 4 Maxwell equations.
How do we ensure that 𝛁 4 𝑬 = 𝜌/𝜖#?

• For the continuous Maxwell equations:

• 𝛁 4 𝑬 = 𝜌/𝜖# at t = 0

• 𝑬 evolves according to:
𝜕'𝑬 = 𝑐&𝜵×𝑩 − 𝜇#𝑐&𝒋

• 𝒋, 𝜌 satisfy:
𝜕'𝜌 + 𝛁 4 𝒋 = 0

𝛁 4 𝑬 = 𝜌/𝜖# at	any t⟹

• This remains true for the discretized Maxwell equations
(with the most common discretization schemes).

• However, making sure that the deposited 𝒋, 𝜌 satisfy 𝜕'𝜌 + 𝛁 4 𝒋 = 0 is not trivial! 
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Discretizing the field and particle equations



Discretizing the equations of motion:
derivatives are replaced by finite-difference approximations 

Discretized equation:Continuous equation: 
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Discretizing the equations of motion:
derivatives are replaced by finite-difference approximations 

Different algorithms exists (e.g. Boris, Vay, Higuera-Cary, …) 
depending on the details of how the term 𝒗×𝑩 is treated.

Discretized equation:Continuous equation: 
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Discretizing the field and particle equations



Discretized equation:

Discretizing the Maxwell equations:
derivatives are replaced by finite-difference approximations 
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Continuous equation: 

@B
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e.g.

⊙𝑘

r̂ : discretized spatial derivative

∆𝑥, ∆𝑦, ∆𝑧: cell size
(In practice, the components of E and B are staggered in time 
and space in order to increase the accuracy of this discretization.)



Discretized equation:

Discretizing the Maxwell equations:
derivatives are replaced by finite-difference approximations 

Continuous equation: 

⊙𝑘

• This discretization scheme is called the Yee scheme.

• Other discretization schemes are also commonly used
(e.g. using more points on the grid to evaluate the 
finite-difference spatial derivative)
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Resolution requirement: beam-driven acceleration

Courtesy of
M. Thévenet
and S. Diederichs

• Linear regime:
∆𝑥, ∆𝑦, ∆𝑧 should be much smaller 
than 𝜆( and the beam(s) size

• Nonlinear regime:
∆𝑥, ∆𝑦, ∆𝑧 may need to be smaller
than the thin sheath along the bubble

• If in doubt, studying convergence with 
respect to grid size is always a good idea.



Resolution requirement: laser-driven acceleration

Same requirements as for beam-driven, 
but in addition, ∆𝑧 needs to be much smaller
than the laser wavelength.

e.g. z�z ⇠ �

40

Imposes that the grid be very fine in z!



Courant-Friedrichs-Lewy (CFL) limit

The CFL limit constrains the timestep ∆𝒕.

In order for the Yee discretization 
scheme to be numerically stable:

(Most other discretization schemes also have a CFL limit.)

For instance:

• For square cells (∆𝑥 = ∆𝑦 = ∆𝑧):     ∆𝑡 < ∆*
+√$

• If ∆𝑧 ≪ ∆𝑥, ∆𝑦 (e.g. laser-driven):      ∆𝑡 < ∆*
+

�t <
1
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Computational cost rapidly increases with grid resolution.

The number of computational operations scales like: 

Reducing ∆𝑥, ∆𝑦, ∆𝑧 by a factor 2 increases the computational cost by a factor 16!

Tinteraction

Number of timesteps
(i.e. number of iterations
of the PIC loop)

Number of grid points

= physical duration of the simulated phenomenon
(e.g. time it takes for the driver to propagate through the whole plasma)
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One consequence of using low resolution: 
spurious numerical dispersion

(Picking a different discretization scheme than the 
Yee scheme can mitigate spurious numerical dispersion.)

Yee scheme with low 
resolution (unphysical) 

Expected result

If ∆𝑧 is not small enough compared to the laser wavelength,
the group velocity of the simulated laser pulse may be erroneous.
(“spurious numerical dispersion”)



Discretizing the field and particle equations



The gathered field is a weighted sum of the field on the grid.

The field felt by a macroparticle is a weighted sum 
of the field at neighboring grid points:

E(xp) =
X

i,j,k2V(xp)

S(xp � xi,j,k)Ei,j,k

Macroparticle 
position

Sum over grid points
in the vicinity of the 
macroparticle

Grid point 
position

Field value
at grid point

“Shape factor”
xp



Different shape factors are commonly used.

E(xp) =
X

i,j,k2V(xp)

S(xp � xi,j,k)Ei,j,k • Linear shape factor
(a.k.a. “1st order”, ”CIC”)
involves 2 grid points 
along each direction

• Quadratic shape factor
(a.k.a. “2nd order”, ”TSC”)
involves 3 grid points 
along each direction

• Cubic shape factor
(a.k.a. “3rd order”, ”PQS”)
involves 4 grid points 
along each direction

S(xp � xi,j,k) = Ŝ
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High-order particle shapes are 
computationally more expensive
but often lead to smoother results.



Macroparticles distribute charge/current to neighboring points

Macroparticles distribute their 
charge to neighboring grid points:

⇢i,j,k =

P
p2V(xi,j,k)

S(xi,j,k � xp)qp

�x�y�z

Sum over 
macroparticles
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the grid point

Cell volumeField value
at grid point

Total charge
of the 
macroparticle

(takes into 
account weight)



Macroparticles distribute charge/current to neighboring points

Macroparticles distribute their 
current to neighboring grid points:

J i,j,k =

P
p2V(xi,j,k)

S(xi,j,k � xp)qpvp

�x�y�z

Note: that are also more advanced deposition schemes for J
(e.g. Esirkepov scheme), that automatically ensure

@t⇢+r · J = 0
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Full PIC simulations can rapidly be very computationally expensive.

Number of timesteps
(i.e. number of iterations
of the PIC loop)

Number of grid points
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Example: typical 3D laser-wakefield simulation
3D grid with 200 x 200 x 2500 grid points
140,000 timesteps (CFL limit!)
⟹ ~60,000 hours on 1 core (7 years!)

We need either faster cores
or more cores in parallel.



Single-core performance is saturating nowadays.

Nowadays, individual cores do not get faster.
We need to use many cores in parallel.



Modern supercomputers are organized in nodes, with multiples cores.

Computational work is parallelized across multiple cores and across multiples nodes.

CPUs: tens of cores per node GPUs: thousands of (slow) cores per node

”Fast” network (~10 Gb/s)



Advantages of GPUs: high memory bandwidth and energy efficiency

Data from github.com/karlrupp/cpu-gpu-mic-comparison

Memory bandwidth of different CPU/GPU models
(= how fast can the compute cores fetch data in memory)

Power efficiency of different supercomputers
(= how much computation 

per unit of energy consumption)

Data from top500.org



Domain-decomposition: groups of cores handle a fixed chunk of space

• Groups of cores (e.g. part of a CPU, one full GPU) work together 
on the same chunk of space (memory is shared among this group)

• Information is exchanged between groups of core over the network (using MPI)



Domain-decomposition: groups of cores handle a fixed chunk of space



Load imbalance can significantly slow down the simulation.

Load imbalance:
Some groups of cores have many
more macroparticles (i.e. more work)
than others.

The simulation will always progress 
at the pace of the slowest group.



Dynamic load-balancing changes the shape of subdomains 
in order to even out the work load.

Slides JL

1J. Derouillat et al, Comput. Phys. Comm. 222, 351-373 (2018).

Simulation using Smilei1

Warp-XWarp-X

Simulation using Warp-X2

2J.-L. Vay et al, Proc. AAC 2018.



Conclusion

• Full electromagnetic PIC codes model the Maxwell equations, 
along with the equations of motion for plasma and beam particles

• Very generic, but the computational cost can be very high.
(esp. for laser-driven acceleration)

• Therefore, simulations often require massively parallel computing architectures.

• Examples of common full electromagnetic PIC codes in our community:

EPOCH      OSIRIS      Smilei PIConGPU WarpX ….



Quick announcement: practical exercises

Please make sure you bring your laptop, 
and have an active Google account.

We will be using Google Colab. 
(no need to install anything)
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Thank you for your attention

There are multiple open post-doctoral positions at the BELLA Center (theory & experiments).
If interested, please visit jobs.lbl.gov and search for “BELLA”.



Staggering in time



Staggering in space


