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Reminder: Full Particle-In-Cell codes solve the Maxwell equations, 
along with the equations of motion for plasma and beam particles



For simulations of laser-driven acceleration:

Reminder: Full Particle-In-Cell codes 
can quickly become computationally expensive
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The number of computational operations scales like: 

Number of timesteps
(i.e. number of iterations
of the PIC loop)

Number of grid points

Ncomp /
✓
Lx

�x

◆
⇥

✓
Ly

�y

◆
⇥

✓
Lz

�z

◆
⇥

✓
Tinteraction

�t

◆

Tinteraction ⇠ Lplasma

c �z ⇠ �

40
�t ⇠ �z

c
⇠ �

40c



Outline

• The boosted-frame technique

• Cylindrical geometry

• Laser envelope model

• Quasi-static PIC codes



Outline

• The boosted-frame technique

• Cylindrical geometry

• Laser envelope model

• Quasi-static PIC codes



What if we look at the situation in a different Lorentz frame?

Boosted frame

Lorentz transform, 
characterized by 𝛽!, 𝛾!
(typically 𝛾! ≫ 1)

The physics in the boosted frame is equivalent, but should look different. 

𝛽! = 1 − 1/𝛾!"

Laboratory frame



What if we look at the situation in a different Lorentz frame?

Laboratory frame

Boosted frame

Dilation/contraction of length

depending on the speed of the object 𝑣#$!:

𝐿!%%&'() =
*+,!

"

*+,!-#$!//
𝐿#$!

𝛽! = 1 − 1/𝛾!"

𝑣#$!

• Laser pulse (𝑣#$! ≈ 𝑐):
𝐿!%%&'() ≈ 2𝛾! 𝐿#$!

• Plasma (𝑣#$! ≈ 0):
𝐿!%%&'() ≈ 𝐿#$! /𝛾!

Lorentz transform, 
characterized by 𝛽!, 𝛾!
(typically 𝛾! ≫ 1)



What if we look at the situation in a different Lorentz frame?

Laboratory frame

𝛽! = 1 − 1/𝛾!"
• Laser pulse (𝑣#$! ≈ 𝑐):
𝐿!%%&'() ≈ 2𝛾! 𝐿#$!

• Plasma (𝑣#$! ≈ 0):
𝐿!%%&'() ≈ 𝐿#$! /𝛾!

Lorentz transform, 
characterized by 𝛽!, 𝛾!
(typically 𝛾! ≫ 1)

Boosted frame



Computational advantage: simulating in 
the boosted frame reduces the total number of iterations.

• Laser pulse (𝑣#$! ≈ 𝑐):
𝐿!%%&'() ≈ 2𝛾! 𝐿#$!

• Plasma (𝑣#$! ≈ 0):
𝐿!%%&'() ≈ 𝐿#$! /𝛾!

𝑁0'(1$'0%2&= 3%&'()$*'%+&
∆'

∝ 5,#$-.$

6

Number of iterations needed to 
complete the simulation:

𝑁0'(1$'0%2&,!%%&'() = 8%'()$'%+&-,#$!
" 9!

"

The number of iterations needed is
orders-of-magnitude lower 
in the boosted frame!

(typically 𝛾! ∼ 10 − 60)

J.-L. Vay, “Noninvariance of Space- and Time-Scale Ranges under a Lorentz Transformation 
and the Implications for the Study of Relativistic Interactions”, Phys. Rev. Lett. (2007)



The workflow of a lab-frame Particle-In-Cell simulation

1. Initialize the plasma and laser at t=0

2. Repeatedly update the fields and particles, in discrete timesteps
using a discretized version of the Maxwell equations and equations of motion

dp

dt
= q(E + v ⇥B)

dx

dt
= v

 
p =

mvp
1� v2/c2

!Time
t=0:
initalization

@tB = �r⇥E

@tE = c2r⇥B � µ0c
2j



The workflow of a boosted-frame Particle-In-Cell simulation

1. Initialize the plasma and laser at t=0, in the boosted frame
(most PIC codes will automatically convert the lab-frame input parameters to the boosted frame)

2. Repeatedly update the fields and particles, in discrete timesteps
using a discretized version of the Maxwell equations and equations of motion

dp

dt
= q(E + v ⇥B)

dx

dt
= v

 
p =

mvp
1� v2/c2

!Time
t=0:
initalization

@tB = �r⇥E

@tE = c2r⇥B � µ0c
2j

Unchanged, because
invariant under a Lorentz
transform



Boosted-frame simulations required specialized discretization
in order to avoid numerical instabilities

Plasma at rest

Relativistically
flowing plasma

With the standard PIC discretization (e.g. Yee 
solver),  it turns out that relativistically-flowing 
plasmas are numerically unstable.
(Numerical Cherenkov Instability - NCI)

Modified discretizations have been 
developed in order to mitigate the NCI, e.g.

• Filtering of the gathered E&B:
B. Godfrey et al., JCP (2014), B. Godfrey et al., CPC (2015)

• Customized Maxwell stencils:
P. Yu et al, CPC (2015), F. Li et al, CPC (2020)

• Galilean spectral solver:
M. Kirchen et al., PoP (2016), R. Lehe et al., PRE (2016)

• Rhombi-In-Plane solver:
Pukhov, J. Phys.: Conf. Ser. (2019)



Backtransformed diagnostics allow to see the results in the lab frame.

• Looking at the snapshots of the simulation in the boosted frame is confusing.
(As laser-plasma physicists, we are used to think in the laboratory-frame.) 

???

• Most PIC codes automatically reconstruct snapshots in the lab frame, 
while the simulation is running in the boosted-frame. 

Backtransformed
diagnostics



Some limitations of boosted-frame simulations

• Backward-propagating radiation
shrinks and is harder to resolve.

This e.g. prevents boosted-frame simulations 
of colliding pulse injection.

• Macroparticle statistics:
Sometimes not enough macroparticles
to represent injection from the plasma.

(Because the plasma is represented by 
fewer macroparticles in the boosted-frame.)

𝐿!%%&'() =
*+,!

"

*+,!-#$!//
𝐿#$!

Backward-propagating radiation (𝑣#$! ≈ −𝑐):
𝐿!%%&'() ≈ 𝐿#$!/2𝛾!

Forward-propagating radiation (𝑣#$! ≈ +𝑐):
𝐿!%%&'() ≈ 2𝛾! 𝐿#$!



Boosted-frame technique: summary

• Runs faster by reducing the number of PIC iterations
(by orders of magnitude)

• The simulation runs in the boosted frame, 
but the user may not notice.
(The user provides input parameters in the lab frame.
Simulation results are reconstructed in the lab frame.)

• Limitations: cannot model back-propagating radiation ;
sometimes issues to model injection.

• Examples of codes with boosted-frame capability:
FBPIC        OSIRIS       WarpX

𝑁0'(1$'0%2&,!%%&'() = 8%'()$'%+&-,#$!
" 9!

"
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• Cylindrical geometry

• Laser envelope model

• Quasi-static PIC codes

• purely cylindrical PIC codes
• cylindrical PIC codes with azimuthal decomposition



Full 3D Cartesian grids are expensive

LzLx

Ly

Do not use 2D Cartesian instead
(unless you really know what you are doing)

In 2D Cartesian:
• Space-charge fields do not have the right spatial structure
• Laser diffraction is not correctly captured
• Beam charge is difficult to interpret

Number of grid points
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Cartesian vs cylindrical representation

Representation in Cartesian coordinates: Representation in cylindrical coordinates:

In the wakefield, fields depend on x, y and z.
We need a full 3D grid (x, y, z) to represent them.

In the wakefield (for a round driver), 
fields depend only on r and z (not on 𝜃).
We need only a 2D grid (r, z) to represent them.

r

z



Cartesian vs cylindrical representation

Cartesian 3D PIC code: Purely cylindrical PIC codes:

Solve the Maxwell 
equations in Cartesian 
coordinates, e.g. for 
Maxwell-Faraday:

Solve the Maxwell 
equations in cylindrical 
coordinates, e.g. for
Maxwell-Faraday: 

r

z

+ assume that fields depend only on r and z, e.g.
𝐸1 𝑟, 𝜃, 𝑧 = 7𝐸1(𝑟, 𝑧)

(same equation for 𝐸:, 𝐸;, 𝐵1, 𝐵:, 𝐵;, 𝑗1, 𝑗:, 𝑗;, 𝜌)

(Macroparticles 
usually still 
evolve in full 3D.)



Purely cylindrical codes are computationally much cheaper.

Cartesian 3D PIC code: Purely cylindrical PIC codes:
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Limitation of purely cylindrical PIC code: linearly polarized lasers

Purely cylindrical PIC codes can accurately capture beam-driven acceleration (with a round driver).
However, linearly-polarized laser pulses are not properly captured:

Ex(r, ✓, z) = Êx(r, z)

Ey(r, ✓, z) = 0

Er(r, ✓, z) = Êx(r, z) cos(✓)

E✓(r, ✓, z) = �Êx(r, z) sin(✓)

Example: laser polarized along x
𝐸< and 𝐸= do not depend on 𝜃
(for a round intensity spot)

But, as a consequence, 
𝐸1 and 𝐸: do depend on 𝜃

𝐸! 𝑟, 𝜃, 𝑧 = '𝐸!(𝑟, 𝑧)



Going beyond purely cylindrical PIC codes: azimuthal decomposition

Represent fields as a sum of azimuthal modes
(Fourier decomposition along 𝜃):

Er(r, ✓, z) ⇡ Re

"
Nm�1X

m=0

Êr,m(r, z) e�im✓

#

Er(r, ✓, z) = Re

" 1X

m=0

Êr,m(r, z) e�im✓

# • Mode m=0:
Captures cylindrically-symmetric wakefield
and space charge fields.

• Mode m=1:
Captures linearly-polarized laser pulses
(varies as cos 𝜃 , sin(𝜃))

• Modes m>1:
Captures additional asymmetries
(varying as cos 𝑚𝜃 , sin(𝑚𝜃))

+ assume that only the first 𝑵𝒎 modes are important
(i.e. the higher modes are negligible)

In practice, we often use:
• For beam-driven simulations: 𝑁? = 1 (i.e. purely cylindrical)
• For laser-driven simulations: 𝑁? = 2 or 𝑁? = 3 A. Lifschitz et al., JCP (2009)



Going beyond purely cylindrical PIC codes: azimuthal decomposition

Er(r, ✓, z) ⇡ Re

"
Nm�1X

m=0

Êr,m(r, z) e�im✓

#

A. Lifschitz et al., JCP (2009)

We can use one r-z grid per mode, to represent 
the fields and solve the Maxwell equations

The modes are not 
coupled in the Maxwell 
equations e.g. Maxwell-
Farday: for each m:

m=0

m=1

…

𝑁?
grids

@tB̂r,m =
im

r
Êz,m + @zÊ✓,m

@tB̂✓,m = �@zÊr,m + @rÊz,m

@tB̂z,m = �1

r
@rrÊ✓,m � im

r
Êr,m



Cylindrical geometry: summary

• Runs faster by reducing the number of grid points
(one – or a few – 2D grids instead of a 3D grid)

• Can be combined with the boosted-frame technique.

• Limitations: with only a few azimuthal modes, 
some 3D effects cannot be captured, e.g.:

• Examples of PIC codes with azimuthal decomposition:
Calder Circ, FBPIC, OSIRIS, Smilei, WarpX

• asymmetrical laser spot, pulse front tilt
• strong misalignement between driver and beam,

fully-developed hosing instability
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Reminder: 
• For full PIC, E and B on the grid represent 

the superposition of plasma wakefield, 
space-charge fields, and laser fields 

• Resolving the laser oscillations imposes
high resolution in z and t

Full PIC simulations are expensive because 
they need to resolve the rapidly-varying laser field

�z ⇠ �

40
�t ⇠ �z

c
⇠ �

40c

Maxwell’s equations

Equations of motion

𝜕"𝑩 = −𝜵×𝑬

𝜕"𝑬 = 𝑐#𝛁×𝑩 − 𝜇$𝑐#𝒋

𝑑 𝒑
𝑑𝑡

= 𝑞 𝑬 + 𝒗×𝑩
𝑑 𝒙
𝑑𝑡

= 𝒗

𝒗 =
𝒑
𝛾𝑚

𝛾 = 1 + 𝒑#/𝑚#𝑐#



Alternative formulation: separate the slowly-varying and rapidly-varying fields

Maxwell’s equations for the slow fields:

Equations of motion on the slow timescale:

𝜕"𝑩% = −𝜵×𝑬%

𝜕"𝑬% = 𝑐#𝛁×𝑩% − 𝜇$𝑐#𝒋%

𝑑 𝒑
𝑑𝑡

= 𝑞 𝑬% + 𝒗×𝑩% −
𝑞#

2𝛾𝑚
𝜵 𝑨&#

𝑑 𝒙
𝑑𝑡

= 𝒗

𝒗 =
𝒑
𝛾𝑚

𝛾 = 1 + (𝒑#+𝑞# 𝑨&# )/𝑚#𝑐#

𝑬& 𝑬@

Write the fields as a superposition of slow and fast fields:
𝑬 = 𝑬& + 𝑬@ 𝑩 = 𝑩& + 𝑩@

• 𝑬&, 𝑩&: slow fields (wakefield, space charge fields)

• 𝑬@, 𝑩@: fast fields (laser field)
Often represented instead with the vector potential 𝑨@

𝑬@ = −𝜕'𝑨@ 𝑩@ = 𝜵×𝑨@



Alternative formulation: separate the slowly-varying and rapidly-varying fields

Maxwell’s equations for the slow fields:

Equations of motion on the slow timescale:

𝜕"𝑩 = −𝜵×𝑬

𝜕"𝑬 = 𝑐#𝛁×𝑩 − 𝜇$𝑐#𝒋

𝑑 𝒑
𝑑𝑡

= 𝑞 𝑬 + 𝒗×𝑩 −
𝑞#

2𝛾𝑚
𝜵 𝑨#

𝑑 𝒙
𝑑𝑡

= 𝒗

𝒗 =
𝒑
𝛾𝑚

𝛾 = 1 + (𝒑#+𝑞# 𝑨# )/𝑚#𝑐#

Let us drop the s and f subscripts for now on:

• 𝑬, 𝑩: slow fields (wakefield, space charge fields)

• 𝑨 : rapidly-oscillating laser field



Equation for the laser envelope L𝑨𝒆𝒏𝒗:

Maxwell equation for the laser field A:

Maxwell equation for the rapidly-varying laser field 
and envelope approximation

𝜕"# − 𝑐#𝜵# 𝑨 = 𝒋&/ 𝜀$ = − '(!

)"*#
𝑨

Rapidly-varying current, due to 
plasma electrons oscillating in laser field

𝜕"# − 2𝑖𝜔$(𝜕" + 𝑐𝜕+) − 𝑐#𝜵# D𝑨𝒆𝒏𝒗 = −
𝜒𝑒#

𝑚(𝜀$
D𝑨𝒆𝒏𝒗

→ Discretization (e.g. finite-difference) on a grid that does 
not need to resolve the laser oscillations

𝜒 = 𝑛/𝛾 is computed on the grid from the macroparticles
(in a similar way as ρ, 𝒋 are “deposited” in full PIC)

Envelope representation:
𝑨 = 𝑅𝑒[D𝑨𝒆𝒏𝒗 𝑒𝒊𝝎𝟎(𝒛/𝒄 5𝒕) ]

Typical lengthscale for A: 𝜆#$&(1 = 2𝜋𝑐/𝜔D

Typical lengthscale for L𝑨𝒆𝒏𝒗: 𝜆E ≫ 𝜆#$&(1

𝜒 = 𝑛/𝛾



Overview: Full PIC vs PIC with envelope model 

Full PIC

𝜕'𝑩 = −𝜵×𝑬
𝜕'𝑬 = 𝑐"𝛁×𝑩 − 𝜇D𝑐"𝒋

𝑑 𝒙
𝑑𝑡

= 𝒗
𝑑 𝒑
𝑑𝑡 = 𝑞 𝑬 + 𝒗×𝑩

− F"

G9?
𝜵 L𝑨𝒆𝒏𝒗𝟐

𝜕'𝑩 = −𝜵×𝑬
𝜕'𝑬 = 𝑐"𝛁×𝑩 − 𝜇D𝑐"𝒋

PIC with envelope model
(a.k.a. ponderomotive guiding center)

𝜕'" − 2𝑖𝜔D(𝜕' + 𝑐𝜕;) − 𝑐"𝜵" L𝑨𝒆𝒏𝒗 = −
𝜒𝑒"

𝑚(𝜀D
L𝑨𝒆𝒏𝒗

𝑑 𝒙
𝑑𝑡

= 𝒗
𝑑 𝒑
𝑑𝑡 = 𝑞 𝑬 + 𝒗×𝑩

The grid needs to resolve the laser oscillations: The grid does not need to resolve the laser oscillations:

∆𝑧 ≪ 𝜆#$&(1 ∆𝑡 ≪ 𝜆#$&(1/𝑐 ∆𝑧 ≪ 𝜆E ∆𝑡 ≪ 𝜆E/𝑐



Laser envelope model: summary

• Runs faster by using fewer grid points in z and fewer timesteps
(by allowing a coarser resolution in z and t)

• Some limitations:

• Examples of codes with laser envelope capability: 
OSIRIS     SMILEI     (+ most quasistatic codes)

• Other elements than the laser oscillations 
may actually still require high z and t resolution
(e.g. sharp bubble edges, self-injection)

• Difficulty in modeling laser depletion 
without a high resolution in z
(laser wavelength changes during depletion)
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Full PIC codes do not efficiently exploit the slow beam/laser evolution

• The beam and laser evolution are slow:
Beam timescale: 𝜏!($?~𝜆,/𝑐
Laser timescale: 𝜏#$&(1~𝑍I/𝑐

• The overall structure of the wakefield also 
evolves on the same timescale (𝜏!($?, 𝜏#$&(1)

• It takes a much shorter time for plasma particles 
to cross the window: 𝜏/1%&&02J ≪ 𝜏!($?, 𝜏#$&(1

Thus, full PIC codes effectively “recompute” the 
wakefield many times over the timescale 𝜏!($?, 𝜏#$&(1
even though it does not change much. 



The fields are slowly-evolving in the variables 𝜻 = 𝒛 − 𝒄𝒕, 𝝉 = 𝒕

Fields represented as a function of 𝒛, 𝒕: Fields represented as a function of 𝜻, 𝝉:

𝜁 = 𝑧 − 𝑐𝑡
𝜏 = 𝑡

z

t

𝜁

𝜏

…

Fields vary rapidly as
a function of:
• z (lengthscale ~𝜆E)
• t (timescale ~𝜆E/c)

(but most of the variation
is simply a translation at c)

Fields still vary rapidly
as a function of 𝜁
(lengthscale ~𝜆E)

Fields vary slowly 
as a function of 𝜏
(timescale ~𝑍I/𝑐 or ~𝜆,/𝑐)



Standard PIC codes vs quasistatic PIC codes

Compute the evolution of:
• beam particles
• laser (envelope)
• plasma particles
together, using the same 
small timestep ∆𝑡.

Compute plasma 
response at a fixed 𝜏,
assuming the laser and 
beam to be “frozen”.

Standard PIC code: Quasistatic PIC code:

∆𝑡 𝑡 𝜏

Update 
laser and beam, 
assuming that the 
plasma response is 
constant over Δ𝜏

∆𝜏



Equation for the (slow) evolution of the beam

𝑑 𝒑
𝑑𝜏

= 𝑞 𝑬 + 𝒗×𝑩
𝑑 𝒙
𝑑𝜏

=
𝒑
𝛾𝑚

For each particle of the beam:

(unchanged compared to regular PIC)

∆𝜏

𝑬,𝑩: obtained from the plasma response

𝜏



Equation for the (slow) evolution of the laser envelope

𝜕'" − 2𝑖𝜔D(𝜕' + 𝑐𝜕;) − 𝑐"𝜵" L𝑨𝒆𝒏𝒗 = −
𝜒𝑒"

𝑚(𝜀D
L𝑨𝒆𝒏𝒗

𝜕K" − 2𝑖𝜔D𝜕K − 2𝑐𝜕K𝜕L − 𝑐"𝜵M" L𝑨𝒆𝒏𝒗 = −
𝜒𝑒"

𝑚(𝜀D
L𝑨𝒆𝒏𝒗

Typically integrated with an implicit finite-difference 
scheme (Crank Nicholson), that does not have a CFL limit.
(but requires numerical inversion of the 𝜵M" operator)

∆𝜏

𝜒 = 𝑛/𝛾: obtained from the plasma response

𝑥

𝜁

𝜏

Change of variable: 𝑧, 𝑡 → 𝜁, 𝜏
'𝑨𝒆𝒏𝒗



Equations for the plasma response

In the variables 𝜁, 𝜏, the plasma 
macroparticles “flow” through the box:

• Compute their trajectory, 
parametrized by 𝜻 instead of t

• Compute the associated E, B 
in the wakefield

Compute plasma 
response at a fixed 𝜏,
assuming the laser and 
beam to be “frozen”.

𝑥

𝜁

𝑥

𝜁



Equations for the plasma response

𝑑𝒙!
𝑑𝜁

=
𝒑!

𝑚𝑐(1 + 𝑞𝜓/𝑚𝑐")
𝑑𝑝#
𝑑𝜁 = −

𝑞 𝛾 𝐸# − 𝑐𝐵$ + 𝑝$𝐵%
𝑐 1 + 𝑞𝜓/𝑚𝑐" − 𝑞𝐵$ −

𝑞"

4𝑚𝑐(1 + 𝑞𝜓/𝑚𝑐") 𝜕#
J𝑨𝒆𝒏𝒗𝟐

𝑑𝑝$
𝑑𝜁 = −

𝑞 𝛾 𝐸$ + 𝑐𝐵# − 𝑝#𝐵%
𝑐 1 + 𝑞𝜓/𝑚𝑐" + 𝑞𝐵# −

𝑞"

4𝑚𝑐(1 + 𝑞𝜓/𝑚𝑐") 𝜕$
J𝑨𝒆𝒏𝒗𝟐

𝛾 =
1 + (𝒑!"+𝑞 J𝑨𝒆𝒏𝒗𝟐 /2)/𝑚"𝑐" + (1 + 𝑞𝜓/𝑚𝑐")"

2(1 + 𝑞𝜓/𝑚𝑐")

Derivation: 
• change of variable 𝜁 = 𝑧 − 𝑐𝑡, 𝜏 = 𝑡
• remove all 𝜏 dependency (𝜕K = 0)
• use conservation law for longitudinal motion

Equations of motion for the macroparticles’ trajectory:Equations for the fields on the grid:

𝜵M"𝜓 = (𝑗; − 𝜌𝑐)/𝜖D𝑐
𝜵M"𝐸; = (𝜵Mm 𝒋M)/𝜖D𝑐

𝜵M"𝐵< = 𝜇D −𝜕=𝑗; + 𝜕L𝑗=
𝜵M"𝐵= = 𝜇D 𝜕<𝑗; − 𝜕L𝑗<
𝜵M"𝐵; = 𝜇D 𝜕=𝑗< − 𝜕;𝑗=

𝐸< − 𝑐𝐵= = −𝜕<𝜓
𝐸= + 𝑐𝐵< = −𝜕=𝜓



Algorithm for the plasma response

𝜵01𝜓 = (𝑗2 − 𝜌𝑐)/𝜖3𝑐
𝜵01𝐸2 = (𝜵0- 𝒋0)/𝜖3𝑐

𝜵01𝐵4 = 𝜇3 −𝜕5𝑗2 + 𝜕6𝑗5
𝜵01𝐵5 = 𝜇3 𝜕4𝑗2 − 𝜕6𝑗4
𝜵01𝐵2 = 𝜇3 𝜕5𝑗4 − 𝜕2𝑗5

𝐸4 − 𝑐𝐵5 = −𝜕4𝜓
𝐸5 + 𝑐𝐵4 = −𝜕5𝜓

𝑑𝒙0
𝑑𝜁 =

𝒑0
𝑚𝑐(1 + 𝑞𝜓/𝑚𝑐1)

𝑑𝑝4
𝑑𝜁 = −

𝑞 𝛾 𝐸4 − 𝑐𝐵5 + 𝑝5𝐵2
𝑐 1 + 𝑞𝜓/𝑚𝑐1 − 𝑞𝐵5 −

𝑞1

4𝑚𝑐(1 + 𝑞𝜓/𝑚𝑐1) 𝜕4
=𝑨𝒆𝒏𝒗𝟐

𝑑𝑝5
𝑑𝜁

= −
𝑞 𝛾 𝐸5 + 𝑐𝐵4 − 𝑝4𝐵2

𝑐 1 + 𝑞𝜓/𝑚𝑐1
+ 𝑞𝐵4 −

𝑞1

4𝑚𝑐(1 + 𝑞𝜓/𝑚𝑐1)
𝜕5 =𝑨𝒆𝒏𝒗𝟐

Fields and macroparticle positions/momenta 
are computed together slice-by-slice, from head 
(known initial condition: quiescent plasma) to tail

To go from slice 𝜁 to slice 𝜁 − Δ𝜁:

• Gather fields at 𝜁 on macroparticles 
• Use equation of motion to get 

positions/momenta at 𝜁 − Δ𝜁
• Deposit 𝒋, 𝜌 on the grid at 𝜁 − Δ𝜁
• Invert ∇M" to find 𝐸, 𝐵, 𝜓 at 𝜁 − Δ𝜁

Courtesy of 
S. Diederichs

Δ𝜁



Quasistatic approximation: summary

• Runs faster by reducing the number of timesteps 
(by using a large Δ𝜏)

• Requires separating the beam/laser and plasma evolution, 
under the assumptions that the wakefield structure evolves slowly.

• Limitation: cannot model injection from the plasma
(e.g. because of the separation between plasma and beam particles)

• Examples of 3D quasistatic PIC codes: 
HiPACE++, QuickPIC

• Some codes combine quasistatic + cylindrical geometry:      
Inf&rno, Q-PAD, Wake-T



Conclusion

• Different techniques can be used to speed up PIC 
simulations, oftentimes by orders of magnitude:

• Boosted-frame
• Cylindrical geometry
• Laser envelope
• Quasistatic

• It is nevertheless important to understand their 
limitations and in which case they are applicable.



Quick announcement: practical exercises

Please make sure you bring your laptop, 
and have an active Google account.

We will be using Google Colab. 
(no need to install anything)
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Thank you for your attention

There are multiple open post-doctoral positions at the BELLA Center (theory and experiments).
If interested, please visit jobs.lbl.gov and search for “BELLA”.


