

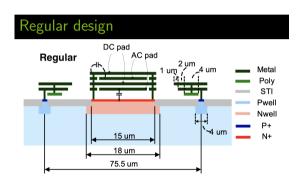
Passive CMOS Strip: Lab measurements

Marta Baselga, Spyridon Argyropoulos, J-H Arling, Naomi Davis, Leena Diehl, I-M Gregor, Marc Hauser, Fabian Hügging, Michael Karagounis, Kevin Kröninger, Fabian Lex, Ulrich Parzefall, Arturo Rodriguez, Birkan Sari, Surabhi Sharma, Niels Sorgenfrei, Simon Spannagel, Dennis Sperlich, Jens Weingarten, Iveta Zatocilova

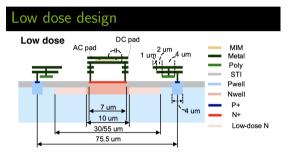
27/2/2023 Heidelberg - Verbund CMOS meeting

Motivation

- All ATLAS and CMS upgrade strip detectors are fabricated in Hamamatsu Photonics HPK
- Seems like large area strips only are fabricated in microelectronics foundries
- Here we want to show that also CMOS foundries can fabricate strip detectors and do not have any impact in the performance

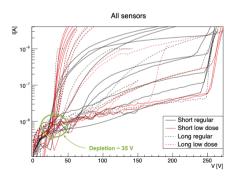


Passive CMOS Strip

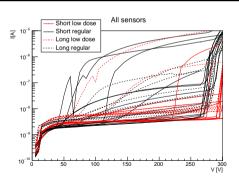

- Fabrication in LFoundry with a 150 nm production
- NO electronics included \rightarrow therefore Passive
- FZ 150 μm thick wafer
- We fabricated 2.1 cm and 4.1 cm long strips:
 - 1. 1 cm² reticle used (2 set of masks used)
 - 2. The strips had to be stitched 3 or 5 times
- We want to demonstrate that stitching does not affect the performance of the strips

Two designs of strips: Regular design and Low Dose design

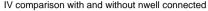
• Similar to the ATLAS strip design

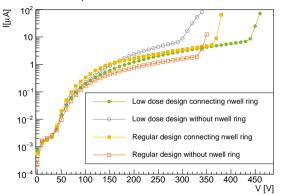


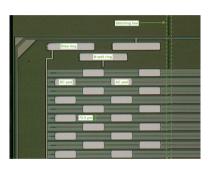
Using low dose implant and a MIM capacitor


Electrical characterization: IV

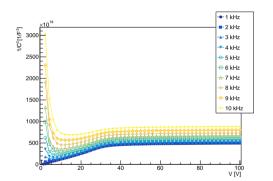
- Two different back processing:
 - First had very often an early break down voltage when reaching the depletion the backplane
 - 2. Second had an improvement with the break down voltage


First back processing

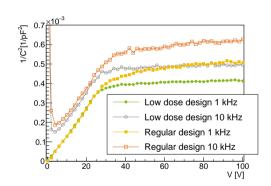



Second back processing

Electrical characterization: IV with nwell ring



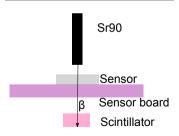
- IV curve shows an improvement when biasing the bias and the nwell ring together
- Probably the break down is happening to the edge of the detector



Electrical characterization: CV

CV with the bias pad

CV with the bias pad and nwell ring

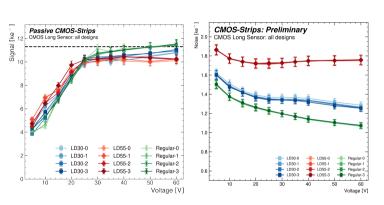


- Decrease of capacitance when increasing the frequency
- ullet The effect decreases biasing the nwell ring o some edge effect

Lab Setup: Alibava board

- Readout is done with ALiBaVa system, it contains a mother board and a daughter board populated with two Beetle readout chip (from LHCb)
- It allows an analogue readout of the signal of 258 channels (two Beetle chips)

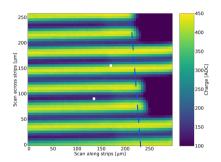
Sketch of the β source setup

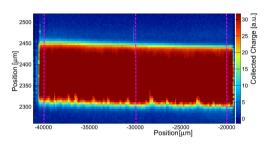


→ Daughter board
 (with two beetle
 chips) bonded to the
 passive CMOS strips

Charge in the ALiBaVa setup: Long detector with Sr⁹⁰ source

• Sr⁹⁰ source located on top of 4 different positions (shown in right image)



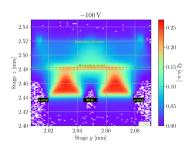

- The three different flavours have similar signal (expected ~ 11500 electrons)
- Low Dose 55 μ m has higher noise \rightarrow it has higher inter strip capacitance

Transient Current Technique measurements

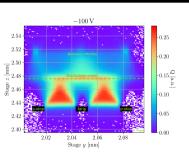
TCT and edge TCT with IR laser

Collected charge of the regular design of a long sensor as a function of the laser position at 50 V, illuminating from top [NIMA 1033 (2022) 166671]

Edge TCT charge from a short LD30 sensor at $100\,V$ (fully depleted). Stitching does not change the collected charge [N. Sorgenfrei, $40th\ RD50,\ CERN]$


Two Photon Absorption Transient Current Technique measurements

- TPA-TCT measurements were performed at CERN SSD
- The charge in stitching and outside stitching does not show any difference


image

TPA-TCT in the stitch area

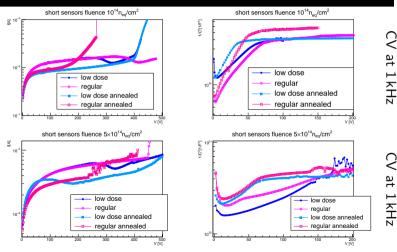
TPA-TCT outside the stitch

 Measurements from Sebastian Pape, Michael Moll, Marcos Fernandez Garcia, and Esteban Curras. More details about this technique in this talk

Irradiated samples

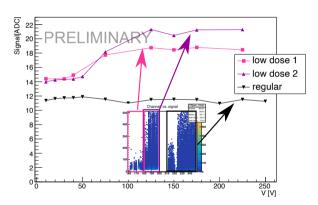
We wanted to test the sensors under irradiation, we shipped samples to:

- 23 MeV protons @ KIT
- Neutrons at Ljubljana
- 24 GeV protons @ IRRAD (CERN)



Irradiated: IVs and CVs

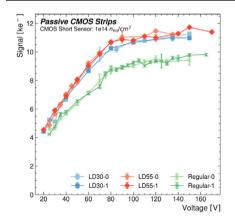
Irraidated with protons at KIT


• 23 MeV protons at fluence $1 \times 10^{14} \, n_{eq}/cm^2$

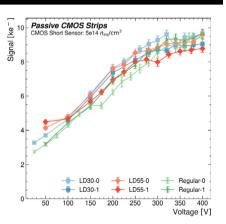
• 23 MeV protons at fluence $5 \times 10^{14} \, n_{eq}/cm^2$

Irradiated: ALiBaVa setup with Sr⁹⁰

Irraidated with protons at KIT $5 \times 10^{14} \, n_{eg}/cm^2$ (23 MeV and annealed)



- Data not calibrated
- Regular design seems to stop working after irradiation

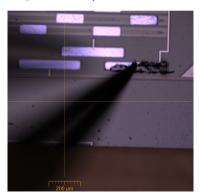


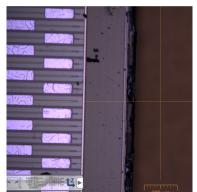
Irradiated: Charge in the ALiBaVa setup with Sr^{90}

Signal of a short detector with Sr⁹⁰ source irradiated

Neutrons fluence $1 \times 10^{14} \, n_{eq}/cm^2$

Neutrons fluence $5 \times 10^{14} \, n_{eq}/cm^2$




technische universitä

[NIMA 1039 (2022) 167031]

Electrical stress to some sensors

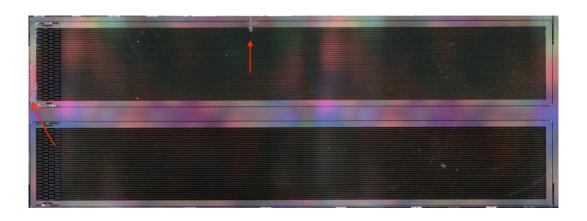
- Sensors irradiated at CERN we tried to reach the break down voltage (not reached at 800 V)
- Some burned damage was inflicted in the sensors (slide 6 shows a non burned edge detector)

Conclusions and future work

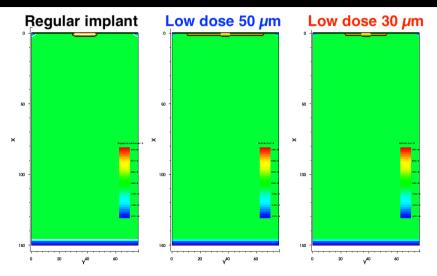
Conclusions

- So far, stitching does not have any impact in the performance of the strip detectors before and after irradiation
- Currently wrapping up the irradiated measurements, finishing the testbeam analysis and studying if there is a problem with the burning detectors

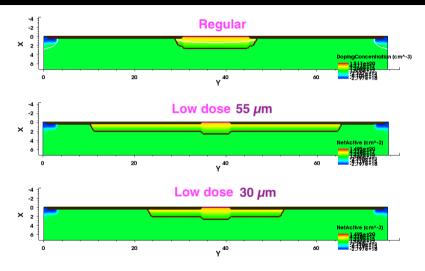
Future work


- Planning a new production with the electronics implemented in the strips is ongoing → that would allow to avoid all the bondings of the strips to the chips
- Production of a full wafer size strip detector with a CMOS foundry

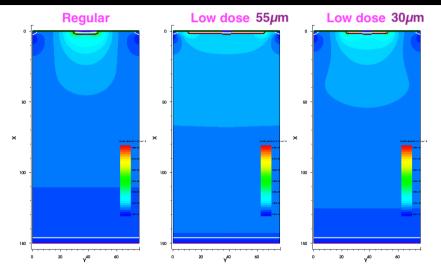
Backup


Irradiated with 23 MeV protons

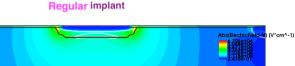
• some burned guard rings after some electrical stress


TCAD simulations: Simulated device

38th RD50 Workshop (On Line), June 2021

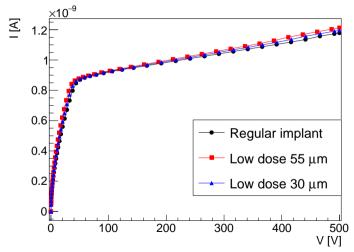

TCAD simulations: Simulated device zoom

38th RD50 Workshop (On Line), June 2021

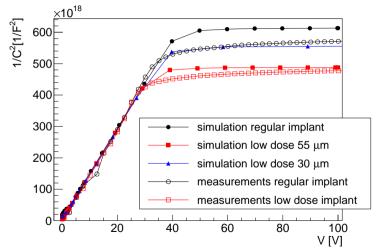

TCAD simulations: Simulated Electric field at 100 V

38th RD50 Workshop (On Line), June 2021

TCAD simulations: Electric field zoom

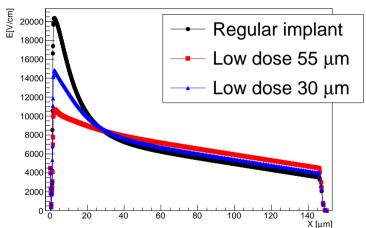

Low dose 55 µm

Low dose 30 µm


TCAD simulation: Current voltage curve

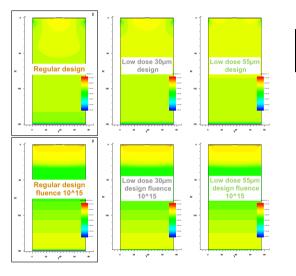
38th RD50 Workshop (On Line), June 2021

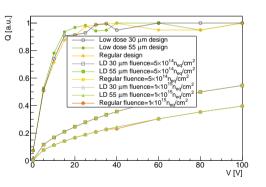
TCAD simulation compared with data: capacitance voltage curves



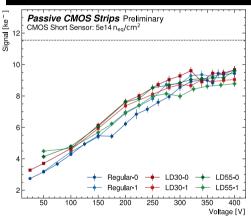
38th RD50 Workshop (On Line), June 2021

TCAD simulation: Electric field 100 V at the center of the strip

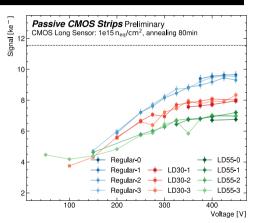



38th RD50 Workshop (On Line), June 2021

TCAD simulation: Irradiated electric field



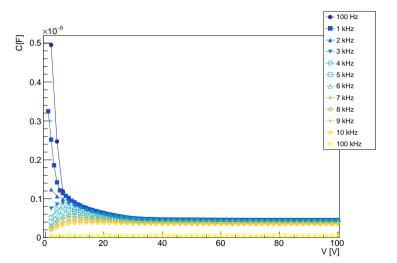
MIP particle going through center of the strip



Irradiated: Charge in the ALiBaVa setup with Sr⁹⁰

Signal of a short detector with Sr⁹⁰ source irradiated

Neutrons $5 \times 10^{14} \, n_{eq}/cm^2$


Neutrons $1 \times 10^{15} \, n_{eq}/cm^2$

technische universitä

CERN

Sorgenfrei,

