

CHRISTIAN BESPIN STATUS AND PROGRESS TJ-MONOPIX2

C. BESPIN, I. CAICEDO, J. DINGFELDER, T. HIRONO, H. KRÜGER, K. MOUSTAKAS, H. PERNEGGER, L. SCHALL, W. SNOEYS, N. WERMES

- TJ-Monopix is line of DMAPS designed in a 180 nm Tower CMOS process based on ALPIDE sensor for ALICE ITS upgrade
- Small collection electrode for operations with low power and low noise
- Depletion grows from collection electrode, for uniform depletion add lateral n-type implant for homogeneous electrical field across sensor volume (1 - 3 k Ω cm substrate resistivity)
- Gap in n-type implant (or additional p-type well) below readout electronics to shape electrical field towards collection node

TJ-MONOPIX DESIGN

- Designed for ATLAS ITk outer layer specs with column-drain readout like in FE-I3 in a 2 cm column
 - Pixel readout capable of dealing with hit rate > 100 MHz / cm² -----
- Goal: 10¹⁵ 1 MeV neq/cm² NIEL tolerance and 100 MRad TID _
- Latest iteration TJ-Monopix2: 33.04 μm pixel pitch in 512 x 512 pixel matrix (2 x 2 cm²)
- 7 bit TOT resolution (40 MHz BCID clock 25 ns timing)
- 3 bit in-pixel threshold tuning
- Communication via four differential lines
 - Command-based slow control (taken from RD53B) —
 - 160 MHz data output rate (frame-based 8b10b encoding) —

- Derived from ATLAS FE-I3 readout chip
- Rate capabilities around 100 MHz/cm²
- Token propagation along column
- Readout controller at end of column (READ, FREEZE to pixels)
- Data propagated along column with row address, leading edge and trailing edge
- Periphery merges data from one TOKEN signal into frames that are transmitted 8b10b encoded to readout board

COLUMN DRAIN READOUT

- DAQ System based on RD53A/B readout board bdaq53
- Standalone carrier PCB with power and DisplayPort connector
- Readout board with 1 Gbit/s connection to DAQ computer (10) Gbit/s possible)
- Small and portable setup for irradiations, beam tests etc.
- Chip supports addressing by chip ID (jumper on pin header)
 - Multi-chip readout should be possible with bdaq53

- Lab tests conducted for threshold and noise measurements
- Design goals: operational threshold \approx 100 e⁻, threshold dispersion < 10 e⁻, ENC \approx 5 e⁻
- In-pixel threshold trimming (3 bit) significantly reduces threshold dispersion to less than design value _
- Operational threshold higher than anticipated, but we will see later that it should not be a problem

TJ-MONOPIX2 LAB TESTS

- Noise (ENC) measured from steepness of S-curve when injecting varying charges
- Mean noise 5.6 e⁻ in accordance with design goal _
- No RTS noise tail observed as in TJ-Monopix1 _
- Allows operation at low thresholds thanks to large S/N ratio
- Reminder: in TJ-Monopix1, operational threshold was O(400 e⁻) which lead to efficiency losses in pixel corners, especially after irradiation

- Beam tests performed at DESY in November 2022 (results fresh off the press, still preliminary) _ - 5 GeV electron beam with Mimosa26 telescope and FE-I4 time reference
- Good correlation between TJ-Monopix2 DUT and telescope planes

Local X residuals for Telescope 1 Local Y residuals for Telescope 1 Entries: 456464 Entries: 456464 25000 $RMS = 6.8 [\mu m]$ $RMS = 6.8 [\mu m]$ Gauss fit: Gauss fit: $A = 24204.2 \pm 48.1$ $A = 24270.1 \pm 45.5$ $\mu = 0.0 \pm 0.0 \, [\mu m]$ $\mu = -0.0 \pm 0.0 \, [\mu m]$ 20000 $\sigma = 6.9 \pm 0.0 \, [\mu m]$ $\sigma = 6.9 \pm 0.0 \, [\mu m]$ 15000 # 10000 5000 20 -20 20 40 40 -40 -20 X residual [µm] Y residual [µm]

- Investigated samples (unirradiated):
 - epitaxial silicon (30 µm thickness) with gap in n-layer and with additional p-well
 - Czochralski silicon (100 µm thickness) with gap in n-layer
- Type of silicon growth (epi vs Cz) not part of investigation, but thickness of sensitive volume
- All samples operating at a threshold of ~200 e⁻

TJ-MONOPIX2 BEAM TESTS

- Cluster charge (MPV) for standard pixel flavor
- Cz sample has higher MPV since depletion is not limited by thickness of epi layer (30 μm) - Still not fully depleted because of -6 V bias voltage on substrate and p-wells on top of chip

- In-pixel efficiency for standard pixel flavor
- Homogeneous efficiency > 99 % with no losses in the corners, higher than TJ-Monopix1 already
- deviation within error (estimated around 0.1%)

– With ~200 e⁻ threshold no difference between samples expected for the observed cluster charge,

PIXEL2022, Santa Fe – C. Bespin

- 97.50 - 96.25 · 95.00 93.75 92.50 - 91.25 90.00

11

100.00

- Compare different sensor materials (epi 30 µm / Cz 100 µm) regarding cluster size
- As expected from accumulated charge and higher depletion than 30 µm cluster size is significantly larger in 100 µm silicon (not fully depleted)

PIXEL2022, Santa Fe – C. Bespin

75

- possibility of up to 50 V bias voltage)
- Studied efficiency for different bias voltages, analysis still ongoing, but even at 5 V bias > 99 % efficiency (plots suffer from low statistics due to few columns in flavor)

- More "experimental" front-end (called "HV") with biasing from collection n-well (AC coupled with

- In-pixel cluster size for different bias voltages in HV flavor
- Qualitative increase in cluster size observed
- As expected, cluster size in center of pixel smaller than in corners _
- Important to keep threshold low to collect shared charges, especially after irradiation (losses observed in TJ-Monopix1)

PIXEL2022, Santa Fe – C. Bespin

LAB Silizium Labor Bonn TJ-MONOPIX2 CLUSTER SIZE (HV)

- Check front-end parameters for possibly lower operational thresholds
- Operational values mainly match design values, except threshold
- Collected charge > 2000 e⁻ for MIPs with efficiency > 99 % for unirradiated chips across front-end and substrate variants
- Testbeam campaigns already planned for first half of 2023 for irradiated sensors, threshold studies, ...
- PIXEL2022 proceeding: submitted / arXiv:2301.13638
- VERTEX proceeding (I.Caicedo): submitted

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

675587 (Maria Sklodowska-Curie ITN STREAM), 654168 (AIDA-2020), and 101004761 (AIDAinnova).

- This project has received funding from the Deutsche Forschungsgemeinschaft DFG (grant WE 976/4-1), the German Federal Ministry of Education and Research BMBF (grant 05H15PDCA9), and the European Union's Horizon 2020 research and innovation program under grant agreements no.

BACKUP

- Significant efficiency loss after irradiation to < 70 % (at 10^{15} neq cm⁻²)
- Charge is lost due to E-field shaping under deep pwell -> need another modification besides low dose n-type

TJ-MONOPIX1 EFFICIENCY

- Measured 10^{15} neq cm⁻² irradiated chips in 5 GeV electron beam at DESY
- Efficiency improvement in epi chip from 69 % to 87 % due to sensor modifications ____
- More sensitive volume and more charge in Cz leads to full efficiency after irradiation

300 µm Cz: 98.6 % @ 490 e-

TJ-MONOPIX1 SENSOR MODS

30 µm Epi: 87.1 % @ 500 e-

	ALICE LHC	
		Οι
Time resolution [ns]	20 000	
Particle rate [kHz / mm ²]	10	10
Fluence [neq cm ⁻²]	> 1013	1
lon. Dose [MRad]	0.7	Ę

- rad-hard DMAPS

- Increased size of M1 (and also M6) increases the allows for lower thresholds
- M6 is coupling capacitor, area increased by factor 7.5 for better coupling to GN node (gain stage input)
- Impedance matching M1 (output) to M2 (input)
- ENC reduced by factor 2 (by simulation)
- Gain at threshold increased by factor 3 (again sim)

TJ-MONOPIX2 FRONT-END

Increased size of M1 (and also M6) increases the gain and effectively decreases ENC which in turn

