Commissioning HV-MAPS with an HDR Amplifier

CMOS Meeting, Heidelberg University 27.02.2023

Danish Alam

On behalf of HV-MAPS collaboration Physikalisches Institut, Heidelberg University

Bundesministerium für Bildung und Forschung

HV-MAPS

High Voltage – Monolithic Active Pixel Sensor

- 180nm HV-CMOS process by TSI
- Low-cost commercial production
- Integrated active pixel matrix & readout

- High voltage extends the depletion zone \implies depletion $\propto \sqrt{\rho U}$
- A particle ionizes the depletion zone generated charge collected by electrodes via drift

(I. Peric, P. Fischer et al., NIM A 582 (2007) 876)

1/13

Danish Alam

Energy Deposition HV-MAPS

- Thin Sensors (e.g., MuPix)
 - \rightarrow Small signals
- Thick Sensors
 - \rightarrow Large signals \rightarrow PID

- Mean ionization energy $I_0 = 3.62 eV$
- Mean energy loss per flight path of a MIP $dE/dx \approx 3.7 MeV/cm \approx 0.37 keV/\mu m$
- Total deposited energy:

 $E \approx dE/dx \cdot w$

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier

27.02.2023 2/13

How? Charge Sensitive Amplifier with High Dynamic Range

In-Pixel Amplifier

- Small signal \rightarrow Casc Node
- Large signal \rightarrow Casc2 Node

Source: Heiko Augustin, Heidelberg University

- TS1(ToA): time when rising edge of signal crosses threshold
- TS2(ToE): time when falling edge falls below threshold
- Time-over-Threshold (ToT) = TS2 TS1
- ToT → Energy dependent
- Saved data: ToA, ToE, Pixel address

```
ToT \propto Pulse \ Height \propto Q_{signal}
```


Run2021v3 Pixel Architecture

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier

27.02.2023 5/13

Run2021v3 Pixel Architecture

- HDR: Providing the possibility to increase Feedback capacity
- Two (distributed) CMOS comparators per pixel with differential signal transmission to two periphery cells

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier 27.02.2023 5/13

Experimental Setup

Sources of charge signals:

➢ Injection

- Reliable artificial signal.
- Discharge of capacitor imitates charge pulse of real particle
- ➢ ⁵⁵Fe 5.9keV Monochromatic source
- > ⁹⁰Sr 2.3MeV continuous e⁻ source
- \geq ²⁴¹Am 5.486 MeV discrete α source

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier

27.02.2023 6/13

Optimization : Motivation & Approach

- Measurement of Large charge deposition
- Optimize the amplifier and comparator
- Pulse height and Energy resolution need to be improved
- Best use of available ToT range
- Considering the noise-free stability of the sensor

Main optimization parameters:

VNFB: Resistive feedback for the CSA \rightarrow the pulse width control

BLRes: Baseline restoration → Noise control

Example: Sr90 Spectra

ToT range increased!

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier 27.0

27.02.2023 8/13

Measurement with Injection - Oscilloscope

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier

27.02.2023 9/13

Measurement with Injection - Data

- Data collected using injection for a single pixel
- ToT range has significantly improved
- Pixel to pixel variation has been observed

Sr90 Spectra - Comparators

• Precise Comparator \rightarrow sharp ToT spectra

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier

27.02.2023 11/13

Sr90 Spectra - HDR

• HDR Enabled \rightarrow Squeezes ToT spectra

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier

27.02.2023 12/13

Conclusions

- Optimisation on-going
- HDR implementation seems successful
 - \rightarrow Need more investigation

Next steps:

- Investigate large charge depositions
 - ²⁴¹Am, high ohmic Sensors
- Sensor calibration

Thank you for your attention

Backup Slides

Backup

• Lower feedback value \rightarrow Higher the pulse height

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier 2

27.02.2023 14/13

Backup

• Lower BLRes value \rightarrow better energy resolution

Danish Alam

Commissioning HV-MAPS with an HDR Amplifier

27.02.2023 15/13