
AMPEL
1. Motivation
2. Concepts
3. Selected tools
4. Lessons Learned

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

High-throughput

I would like…

Large sample

Fast response

Real-time

More pixels,
more dishes

Repeatability
Have only one
UniverseWhy did?

Test statistic Green
computing

Flexibility
Software
development

Big Data Machine Learning

Statistics

FAIR

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

High-throughput

I would like…

Large sample

Fast response

Real-time

More pixels,
more dishes

Repeatability
Have only one
UniverseWhy did?

Test statistic Green
computing

Flexibility
Software
development

Big Data Machine Learning

Statistics

FAIR

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

I would like…

Scalability Provenance

Modularity

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Any two are “straightforward”...

Scalability Provenance

Modularity

… all three harder.

Dedicated pipeline

Brute force
parallelization

Traditional “run it
yourself”

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

AMPEL
AMPEL is a modular and scalable platform with explicit provenance
tracking, suited for systematically processing large (possibly complex
and heterogeneous) data streams.

This includes selecting, analyzing, updating, combining, enriching
and reacting to data.

Code-To-Data: Teams develop analysis algorithms which are hosted
in AMPEL and exposed to data streams in a high performance
computer center.

https://github.com/AmpelProject

AMPEL

Real-time alerts
Simulations Archives

Live output

User specified
pipeline

Archives

Sample
statistics

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Sample use case:

Neutrino-TDE coincidence searches

Real-time alerts

Live output

TDE lightcurve
model

Match TDE model to real-time stream.
Cross-match to IceCube alerts.

Selected conceptual components

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Modularity requires rules for how modules
interact.

Theory: workflows can be constructed from
operations of four different kinds.

Four separate execution layers, each
distinguished by input/output types.

1 Deconstructing scientific workflows.

Modularity implies freedom within some
structures. Too much restrictions limit
potential applications while too few means
no gain through central solutions.

Can we find a general way of deconstructing a
(real-time) scientific analysis?

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Modularity requires rules for how modules
interact.

Theory: workflows can be constructed from
operations of four different kinds.

Four separate execution layers, each
distinguished by input/output types.

1 Deconstructing scientific workflows.

Modularity implies freedom within some
structures. Too much restrictions limit
potential applications while too few means
no gain through central solutions.

Can we find a general way of deconstructing a
(real-time) scientific analysis?

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Sample use case:
Kilonova counterparts to gravitational wave events

The AMPEL alert archive,
integrated astronomical
catalogs and parallelizable T2
computations allow large data
volume to be scanned.

JN

JvS

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

 User:

Implements operations as
units bound to a Tier.

Collects a series of units
into a channel.

2 Merging user contributions

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

2 Merging user contributions

 User:

Implements operations as
units bound to a Tier.

Collects a series of units
into a channel.

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Unit: python module inheriting from Ampel-interface class.

2 Merging user contributions

Class methods determine I/O.

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

2 Merging user contributions

Ampel-
core

A.-interface

A.-alerts

A.-photometry

A.-ZTF
*Contrib

User designed units

AMPEL Core:

- Workers at each tier executes units with
requested input, allowing system control and
parallelisation.

- Results stored in NoSQL (Mongo) DB.
- Built-in provenance tracking (event journal,

logs and jobs)

Execute a job:

- locally to develop,
- at a cluster for large-volume archive runs
- in a live instance to analyze real-time data

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Sample use case:
Searching for gravitationally lensed supernovae

Exceedingly rare
cosmological probes.

Extension of an existing unit allowed current
pipelines to be reused for a lens searches.

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

A state is the collection of data points
associated with an (assumed) object at a
specific time and visible to a specific user.

AMPEL systematically records every
transient state as an immutable object.

Every computation is directly tied to a state,
a key component of the enforced data
provenance model. Also enables
deduplication - identical computations on
the same state are elided.

3 States: key to provenance and deduplication

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

Sample use case:
Photometric classification for LSST

LSST has immense science potential - if
transients can be photometrically classified.

Modularity allowed AMPEL to be
quickly adopted to the ELASTiCC data
challenge and emulate a realistic
transient program.
Each classification tied to a state.

Useful tools
Contains product endorsements

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● (Optionally!) declare types for
variables, arguments, return
values in Python >= 3.5

● Check for type safety (and
stupid typos) with mypy, e.g. in
refactoring large codebases
with incomplete test coverage

● Bonus: more powerful tab
completion in e.g. VSCode
(Pylance) or vim (Jedi)

Type annotations + mypy
def get_item(target: dict[str, int], key: str) -> None | int:
 return target.get(key)

def do_a_thing_with_a_list(target: list) -> None:
 return target.keys()

if __name__ == "__main__":
 get_item({"foo": 1}, "foo")
 get_item([("foo", 1)], "foo")
 get_item({"foo": 1.}, "foo")

> mypy mypy_demo.py
mypy_demo.py:5: error: "List[Any]" has no attribute "keys"
[attr-defined]
mypy_demo.py:9: error: Argument 1 to "get_item" has
incompatible type "List[Tuple[str, int]]"; expected "Dict[str,
int]" [arg-type]
mypy_demo.py:10: error: Dict entry 0 has incompatible type
"str": "float"; expected "str": "int" [dict-item]
Found 3 errors in 1 file (checked 1 source file)

Code with type annotations (and errors!)

Errors found statically by mypy

https://www.mypy-lang.org/index.html
https://github.com/davidhalter/jedi-vim

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● Sometimes you just want a struct that
a. Generates __init__ and __repr__ for you =>

dataclasses
b. Can also load itself from an untrusted source,

and give useful error messages when it fails
=> pydantic

● Annotations define expected types
● Basic validation with constrained types, e.g. “list

with at least one item”, “float < 0”
● Arbitrary validation with @validator
● Validation logic stays with the data model

pydantic
from typing import Sequence
from pydantic import BaseModel

class ChannelModel(BaseModel):
 channel: int | str
 version: None | int | float | str
 active: bool = True
 members: None | Sequence[str]

if __name__ == "__main__":
 ChannelModel()

pydantic.error_wrappers.ValidationErr
or: 1 validation error for
ChannelModel
channel
 field required
(type=value_error.missing)

A basic pydantic model

A validation error

https://docs.python.org/3/library/dataclasses.html
https://docs.pydantic.dev
https://docs.pydantic.dev/usage/validators/

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● Most of a REST API is input validation
● FastAPI delegates validation to pydantic, and returns

an informative 422 Unprocessable Entity on failure
● Declare handlers with decorators

FastAPI

@app.get("/process/{process}")
async def get_process(process: str) -> ProcessModel:
 for tier in range(4):
 try:
 doc = context.config.get(f"process.t{tier}.{process}", dict,
raise_exc=True)
 except Exception:
 continue
 return ProcessModel(**doc)
 else:
 raise HTTPException(status_code=404, detail=f"{process} not found")

A GET handler with a single parameter

Does what it says: write REST APIs, fast
Autogenerated, interactive API docs

https://fastapi.tiangolo.com

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● Ampel is a multi-user system with a
(read-only) API => restrict views to
authorized users

● Most people have a GitHub account
=> use GitHub as identity provider

● Authorization backend issues a
signed token containing username
and org/group memberships

● Channel definitions include
identities that should have access to
data and logs

Authentication and Authorization
channel: TDE_RANKING
contact: simeon.reusch@desy.de
active: true
members:
 - sjoertvv
 - mitchellkarmen
 - simeonreusch
 - robertdstein
 - AmpelProject/core-devs

Example channel config (excerpt)

Decoded JWT payload in jwt.io debugger

https://gitlab.desy.de/jakob.van.santen/ampel-api-server/-/tree/7c635525b539c19399f954c59e5ab528787f9b7b/github-auth
https://jwt.io

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● Renovate is a dependency updater with
support for nearly every manager you can think
of (think Dependabot, but more configurable)

● Example from our config:

a. Ampel sub-projects: update ASAP

b. Dev dependencies: bundle and update
once a month, automerge if CI passes

c. Major updates: open a PR for each

● Run hosted or on-prem (e.g. for GitLab)

Renovate
A Renovate PR

https://www.mend.io/renovate/
https://github.com/AmpelProject/renovate-config/tree/b3fa14fcf6718299174d701cf61542b242d17d2f
https://github.com/AmpelProject/Ampel-core/pull/210

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● Stop arguing about style and just use black.

● Write tests without the boilerplate using pytest.

● Dependency lock files are a great way to keep a known-working set
of dependencies for testing. Use a manager like poetry, pdm, or
conda-lock to create and maintain them.

● Solving and installing large environments with conda is surprisingly
slow. micromamba is much faster, and comes as a statically-linked
binary.

Miscellaneous morsels

https://black.readthedocs.io/en/stable/
https://docs.pytest.org/en/7.3.x/
https://python-poetry.org
https://pdm.fming.dev/latest/
https://github.com/conda/conda-lock
https://docs.conda.io/projects/conda/en/stable/
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html

Lessons learned

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● …until you have your first many-to-many relationship

● SQL: store single copy, reference by id

● NoSQL: either

a. Keep multiple copies, forget about consistency

b. Build your own relational logic at the application level, using
only idempotent and commutative operations

● Still a decent choice when you never update or delete records, or
just have piles of unrelated documents.

● If you just want to avoid defining a schema, consider jsonb columns
in PostgreSQL.

NoSQL databases are great!

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● Sometimes you have lots of tightly-coupled code that you want to
update atomically, but want different permissions for each
component (some astronomers care about their code being secret)

● Git makes this so much harder than SVN. Can enforce write
permissions with PRs and CI, but there is no way to make
fine-grained read permissions

● Least bad workaround so far:

a. split into multiple repos

b. publish packages from CI for basically any change

c. update dependency spec on downstream packages

● But: can’t detect when a change breaks a downstream package

Tightly-coupled Git repositories

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● AMPEL was designed to encourage and support continuous
scientific software development.

● … this does not mean it happens.

Multiple cases of well working units constructed by knowledgeable
scientists. Appreciated by science community, but not supported once
v1 is running.

Enabling scientific software
development is not enough

Jakob (Nordin alt. van Santen) Zeuthen Data Science Seminar

● It is hard to introduce new workflow concepts.
● Broker is a new thing - everything is a broker - what is a broker?
● Code-To-Data actually seems to work in communication:

AMPEL allows scientific time-domain software to be locally
developed, shared with other users and uploaded to high
performance computer centers - Code-To-Data.

Labels matter

