# CPID: A Comprehensive Particle Identification Framework for Future e<sup>+</sup>e<sup>-</sup> Colliders

Uli Einhaus DPG Frühjahrstagung 21.03.2023 Dresden ulrich.einhaus@desy.de

## HELMHOLTZ

#### **CLUSTER OF EXCELLENCE** QUANTUM UNIVERSE





### The Landscape of Proposed Next-Gen Colliders / Future Higgs Factories



Many proposals under consideration – common tools desired, in particular software!
 → key4HEP / EDM4HEP



- Increasing understanding that particle identification (PID), in particular charged hadron PID, is a very valuable observable at a Future Higgs Factories
- Recent studies focus on 90-250 GeV and precision flavour physics instead of direct (BSM) detection at TeV range → PID is more effective and more relevant there
- This work: new software framework for comprehensive PID



ILD



### **Examples for PID Applications at ILD**

- Z and W hadronic decay branching fractions via flavour tagging
   → make connection between quark flavour and jet composition
   <u>https://ediss.sub.uni-hamburg.de/handle/ediss/9634</u>, <u>https://ediss.sub.uni-hamburg.de/handle/ediss/9928</u>
- Forward-backward asymmetry in e+e- → qq
   → study asymmetry in each flavour channel exclusively overview: <a href="https://tel.archives-ouvertes.fr/tel-01826535">https://tel.archives-ouvertes.fr/tel-01826535</a>
   e+e- → tt, bb: <a href="https://agenda.linearcollider.org/event/8147">https://agenda.linearcollider.org/event/8147</a>
   e+e- → bb/cc: <a href="https://arxiv.org/abs/2002.05805">https://agenda.linearcollider.org/event/8147</a>
   e+e- → bb/cc: <a href="https://agenda.linearcollider.org/event/9211/contributions/49358/">https://agenda.linearcollider.org/event/9211/contributions/49358/</a>
   e+e- → bb/cc, ss: <a href="https://agenda.linearcollider.org/event/9285">https://agenda.linearcollider.org/event/9211/contributions/49358/</a>
- H → ss with s-tagging
   → identify high-momentum kaons to tag ss events <u>https://arxiv.org/abs/2203.07535</u>
- Kaon mass with TOF https://pos.sissa.it/380/115/
- Track refit with correct particle mass for better momentum and vertex
   <a href="https://agenda.linearcollider.org/event/8498/">https://agenda.linearcollider.org/event/8498/</a>



segmented anode (pad Gaseous trackers (Time Projection Chamber, Drift Chamber): specific energy loss dE/dx, via gas ionisation, up to 20 GeV image: O. Schäfer Calorimeter Ring Imaging Cherenkov Detectors: Gas Radiator Cherenkov angle, via imaging, 10 to 50 GeV Mirro 25 cm Midplane arXiv: 2203:07535 Forward RICH and Tracking calorimeter Time of Propagation Counter: Cherenkov angle  $\theta_c$ Cherenkov angle, via timing, up to 10 GeV quartz radiator **Basic principle** photon detectors E g LGADs Si sensors ILD example charged particle time resolution < 50 p Time of Flight: https://doi.org/10.1016/j.nima.2017.02.045 TPC time, via Silicon timing, up to 5 GeV see: T 48.5 B. Dudar

narticle

field cage

- How do we combine the different technologies best?
- How can we create a general assessment of PID performance valid for all of them?
- Can we use machine learning to extract the best performance from the PID observables?
- Optimise detectors and compare them
  - At what timing resolution starts TOF to be relevant for flavour tagging?
  - How does **my** physics result depend on the dE/dx resolution?
  - What if we add a RICH to SiD?



- Modularity as core philosophy:
  - observables algorithms
  - training methods / evaluation algorithms
- Core code takes care of book keeping
  - simple, well defined data structures for storage (TTree) and interfaces (std::vector)
- For now, being implemented in LCIO / Marlin in iLCSoft
  - immediately usable in Key4HEP via 'Marlin wrapper'
  - target: implement in EDM4HEP, make available to whole future colliders community
- In ILD: goal to replace current, somewhat inflexible algorithm



#### **General Structure**





### Example 1: $\pi/K$ Separation with Combined Observables

- dE/dx + TOF
- Single particles 'calibration' events, flat in log(p) and  $cos(\theta)$
- BDT with sig = K, bkg =  $\pi$ ; train & eval per 12 mom bins and per used observable(s)
  - $\rightarrow$  How do we calculate a separation power from a BDT score?





#### p-value Assessment

• Find cut with mis-ID = 1 - efficiency = p-value  $\rightarrow$  find Gaussian quantile  $\rightarrow$  compute Z = 2  $\cdot$  quantile of standard Gauss





K. Götzen, PID WS GSI 2017: PANDA Quality Measures for PID Classification Problems

#### p-value Assessment

• Find cut with mis-ID = 1 - efficiency = p-value  $\rightarrow$  find Gaussian quantile  $\rightarrow$  compute Z = 2  $\cdot$  quantile of standard Gauss





 'Central tail split' of BDT score is equivalent to crossing point of ROC curve with x=y line



### Example 1: $\pi/K$ Separation with Combined Observables

- dE/dx + TOF
- Single particles 'calibration' events, flat in log(p) and  $cos(\theta)$
- BDT with sig = K, bkg =  $\pi$ ; train & eval per 12 mom bins and per used observable(s)





### Example 1: $\pi/K$ Separation with Combined Observables

- dE/dx + TOF
- Single particles 'calibration' events, flat in log(p) and  $cos(\theta)$
- BDT with sig = K, bkg =  $\pi$ ; train & eval per 12 mom bins and per used observable(s)
- dE/dx very similar, TOF levels out due to badly reconstructed events ( $\rightarrow$  see next Talk!) analogue to ILD Interim Design Report **CPID**, **BDT** result 10.0 10 π/K Separation Power π/K Separation Power combination  $\pi/K$ , dE/dx men dE/dx  $\pi/K$ . TOF10 8.0 8 time of flight  $\pi/K$ , combined cluster shapes 6.0 6 4.0 2.0 2 S. .... uniê 0.0 6 810 20 Ω 100 10<sup>2</sup> Momentum (GeV) 10 Momentum (GeV)



### **Example 2: Multiclass Assignment Matrix**

'Old' PID

- dE/dx + calorimeter cluster shapes
- Single particle 'calibration' events, flat in log(p) and  $cos(\theta)$
- e,  $\mu$ ,  $\pi$ , K, p; multiclass BDT; assignment matrix with <sup>eff</sup>/pur on diagonal
- Simple BDT has issue with misassignment, but already generates similar reco purity





**CPID** framework

### **Example 2: Multiclass Assignment Matrix**

- dE/dx + calorimeter cluster shapes
- Single particle 'calibration' events, flat in log(p) and  $cos(\theta)$
- e,  $\mu$ ,  $\pi$ , K, p; multiclass BDT; assignment matrix with <sup>eff</sup>/pur on diagonal
- Addition of TOF gives immediately better result previously hard, easy in CPID









10<sup>4</sup>

 $10^{3}$ 

10<sup>2</sup>

10

- New Comprehensive PID framework under development
- Aims to provide common platform for future e+e- Higgs factories
- Allow for
  - combining and comparing PID techonologies
  - assessing on full detector level with robust performance quantities
  - easy-to-use retraining and flexible adaptation
- First performance indicators already comparable to state-of-the-art
- Much more to come!
- Your feedback and input are welcome!



- Identification of the species of high energy particles
- E.g. e,  $\mu$ ,  $\gamma$ ,  $\pi$ , K, p,  $\Lambda$ , n, [whatever is detector-stable]
- Origin: collider interaction point, fixed target, annihilating DM, active galactic nucleus
- Average over large statistics, or event-by-event identification of individual particles
   → improve precision physics via event-by-event PID!



Gaussian quantile is inverse of distribution function  $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-z^2/2} dz$ 





Talk by K. Götzen, PANDA, 2017



•  $H \rightarrow ZZ^* \rightarrow 4I$  (e/µ)



• easily identifiable via muon chambers and ECal



• more difficult: e,  $\mu$  at low momenta,  $\pi^+$  vs. K<sup>+</sup> vs. p<sup>+</sup>, K<sup>0</sup>s and  $\Lambda^0$ 



### Higgs to strange

- Study Higgs to strange coupling
- Cute-based analysis, final cut: developed strange tagger using K<sup>±</sup>, K<sup>0</sup>s, Λ<sup>0</sup>
  - $\rightarrow\,$  allows to cut background by factor 3  $\,$
- Results in upper limit on  $\kappa_s < 6.7$

*ILD* Preliminary.  $L = 900 \text{ fb}^{-1}$ 

0.2

0.4

Jet 0 + Jet 1 strange score [a.u.]

0.6

 $10^{3}$ 

 $10^{2}$ 

 $10^{0}$ 

 $10^{-1}$ 

 $10^{-2}$ 

0.0

Weight / 0.050

 $\sqrt{s} = 250 \text{ GeV}, P(e^-, e^+) = (-80\%, +30\%)$ 



Uli Einhaus | DPG Frühjahrstagung SMuK Dresden | 21.03.2023 | Page 21

### Example 3

- dE/dx, TOF, cluster shapes
- $e+e- \rightarrow ZH \rightarrow I\bar{I} s\bar{s}$
- Kaon ID vs. all others, assignment matrix
- Kaons well identifiable; calibration source not very relevant







#### View of the steering file

- Steering file
  - input sample
  - observables algorithms
  - signal categories PDGs
  - evaluation algorithm
  - weight file
  - sample cuts etc.

```
<parameter name="PFOCollection" type="string" value="PandoraPF0s"/>
<parameter name="inputAlgoSpecs" type="StringVec">
  dEdx
  TOF: TOF0
  TOF: TOF10
 TOF: T0F50
  dEdx RCD:dEdx RCD
</parameter>
<parameter name="dEdx.F" type="FloatVec" value="1 2 3"/>
<parameter name="dEdx.S" type="StringVec" value="a b c"/>
<parameter name= "TOF0.S" type="StringVec" value="TOFEstimators0ps" />
<parameter name="TOF10.S" type="StringVec" value="TOFEstimators10ps"/>
<parameter name="TOF50.S" type="StringVec" value="TOFEstimators50ps"/>
<parameter name="dEdx RCD.F" type="FloatVec">
  -1.28883368e-02
                    2.72959919e+01
                                     1.10560871e+01 -1.74534200e+00
                                                                     -9.84887586e-07
   6.49143971e-02
                   1.55775592e+03
                                     9.31848047e+08 2.32201725e-01
                                                                      2.50492066e-04
   6.54955215e-02
                    8.26239081e+04
                                    1.92933904e+07 2.52743206e-01
                                                                      2.26657525e-04
   7.52235689e-02
                    1.59710415e+04
                                     1.79625604e+06 3.15315795e-01
                                                                      2.30414997e-04
                   6.38129720e+04
   7.92251260e-02
                                     3.82995071e+04 2.80793601e-01
                                                                      7.14371743e-04
```

<processor name="MyComprehensivePIDProcessor" type="ComprehensivePIDProcessor">

</parameter>

</processor>

