QUBO partitioning and choice of quantum device for charged particle track reconstruction at LUXE

Arianna Crippa¹, Lena Funcke², Tobias Hartung³, Beate Heinemann^{1,4}, Karl Jansen^{1,5}, **Annabel Kropf** ^{1,4}, Stefan Kühn⁶, Federico Meloni¹, David Spataro^{1,4}, Cenk Tüysüz^{1,5}, Yee Chinn Yap¹

DPG 2023 Dresden, 21.03.2023

¹Deutsches Elektron-Synchrotron DESY

³Northeastern University, London

⁵Humboldt-Universität zu Berlin

²Universität Bonn

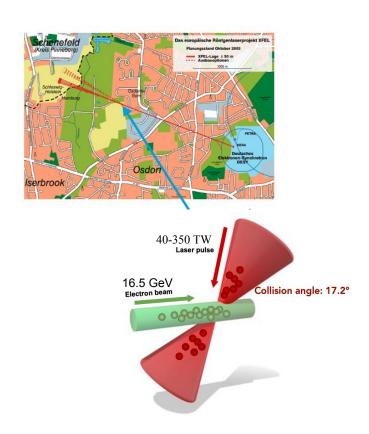
⁴Albert-Ludwigs-Universität Freiburg

LUXE Laser und XFEL Experiment

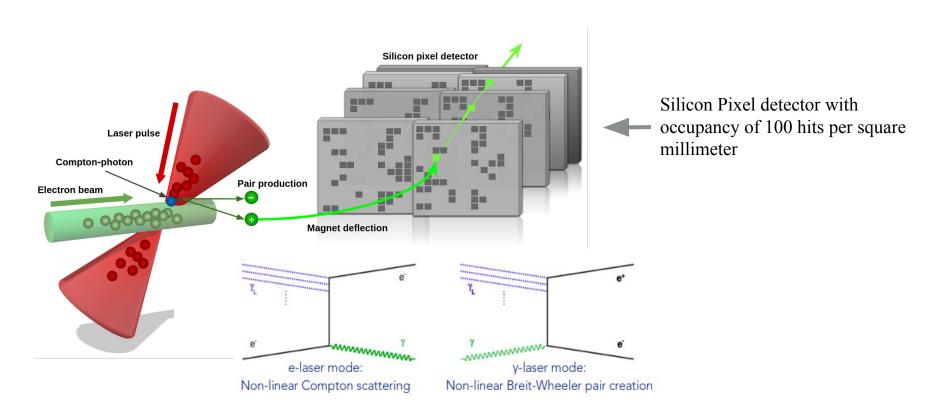
The experiments primary aim is to investigate the transition from the perturbative to the non-perturbative regime of QED \rightarrow **not probed yet!**

Transition happens at the **Schwinger Limit:**

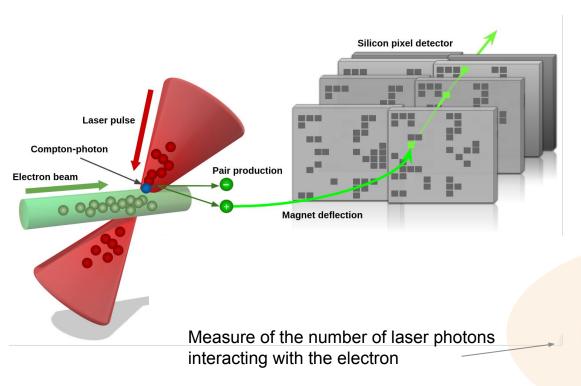
$$\epsilon_{crit} = rac{m_e^2 c^3}{\hbar e} \simeq 1.3 \cdot 10^{18} \, \mathrm{V/m}$$

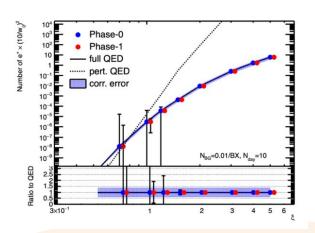


Positron tracking with a quantum computer



Positron tracking with a quantum computer



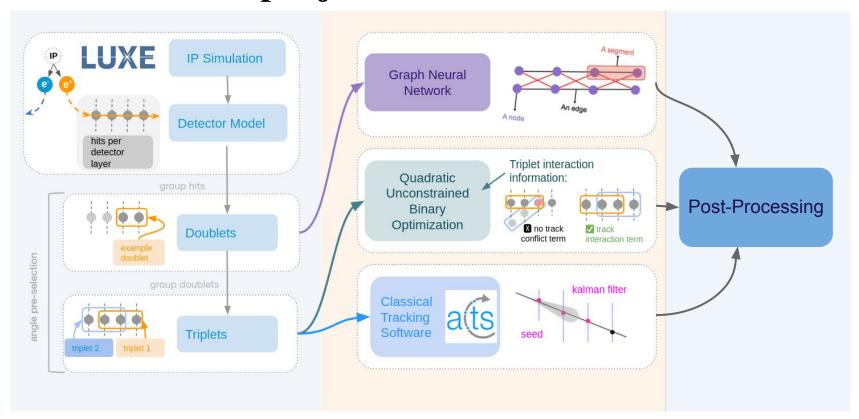


Intensity parameter

$$\xi = \frac{m_e \epsilon_L}{\omega_L \epsilon_{cr}}$$

 $= \frac{m_e \epsilon_L}{\omega_L \epsilon_{cr}} \qquad \begin{array}{ll} \textit{m}_e : & \textit{electron mass} \\ \omega_{\text{L}} : & \textit{laser frequency} \\ \textit{electron mass} \\ \textit{laser frequency} \\ \textit{laser/critical field} \end{array}$ electron mass laser/critical field strength

Overview: full project



QUBO Quadratic Unconstrained Binary Optimization

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0, 1\}$$

Binary value:

0: discarded

1: kept

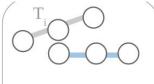
QUBO Quadratic Unconstrained Binary Optimization

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0, 1\}$$

Weight triplets by a_i

QUBO Quadratic Unconstrained Binary Optimization

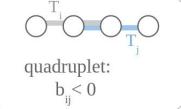
$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0, 1\}$$

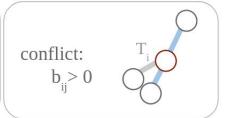


no shared hit: $b_{ij} = 0$

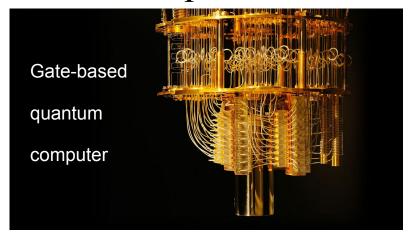
Assign each triplet pairs connectivity b_{ii}

$$b_{ij} = \begin{cases} -S(Ti, Tj), & \text{if } (T_i, T_j) \text{ form a quadruplet,} \\ \zeta & \text{if } (T_i, T_j) \text{ are in conflict,} \\ 0 & \text{otherwise.} \end{cases}$$





Choice of quantum device



Quantum
Annealer

Quantum
fluctuation
'tunneling'

Configuration (state)

Gate-based quantum computers: Utilize quantum logic gates

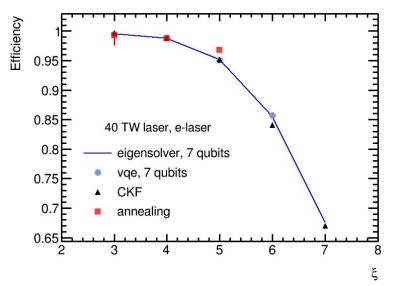
- Offer more control and precision than quantum annealers
- Have highly connected qubits, allowing for entanglement

Quantum annealers: Find the global minimum of a cost function

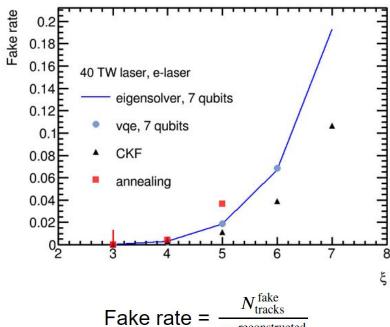
- Specialized for solving optimization problems (Limited to specific types of computations)
- Have fewer connections between qubits

DESY.

Annealing vs gate-based Simulators: Results



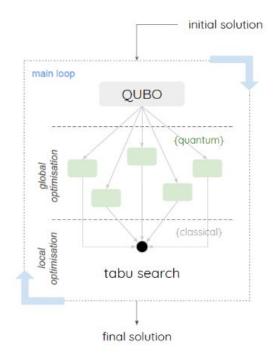
Efficiency =
$$\frac{N_{\text{tracks}}^{\text{matched}}}{N_{\text{tracks}}^{\text{generated}}}$$



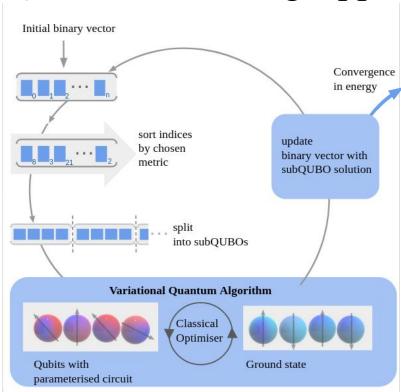
Fake rate =
$$\frac{N_{\text{tracks}}^{\text{fake}}}{N_{\text{tracks}}^{\text{reconstructed}}}$$

QUBO Partitioning: subQUBOs

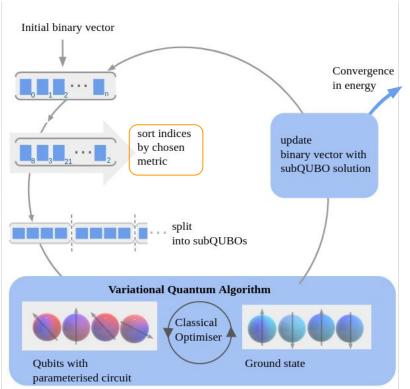
- **&** Each triplet is mapped onto a qubit
 - QUBO is too big to be mapped onto a quantum device!
- Choice of partitioning influences result quality
- Ground state of subQUBO is found using quantum algorithm
- Goal: Sum of sub-solutions converges against overal solution



QUBO Partitioning Approaches



QUBO Partitioning Approaches

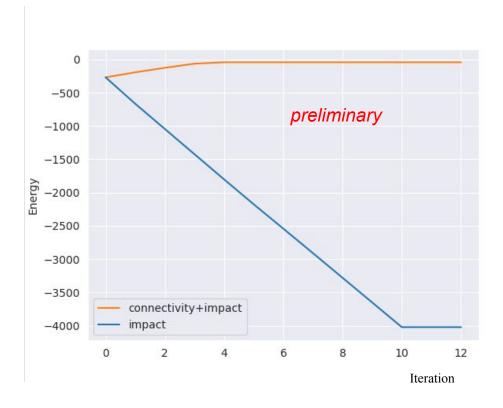


$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0, 1\}$$
Impact of triplet T_i :
$$\Delta O(T_i \rightarrow 1 - T_i)$$

Partitioning types:

- 1. Partition using impact only
- 2. Partition using impact with additional constraints that triplets have to be connected

QUBO Partitioning: Results



- Study: Annealing with subsize of 7 qubits
- Sorting using only impact has advantage over including connectivity between triplets
- Same triplets always get grouped together→stuck in local minimum

Summary and Outlook

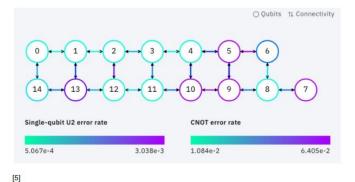
- Positron track reconstruction for LUXE is studied using a QUBO encoding and quantum simulators
- ❖ Gate-based quantum computing with (7 qubits) performs similar to quantum annealing
- Quantum annealing is a good tool to study partitioning and scaling
- ❖ Partitioning challenge: Allow for enough fluctuation without making it random
- ❖ Important measure for comparing annealer with gate-based QC: real devices with noise!
- Other methods of partitioning need to be studied

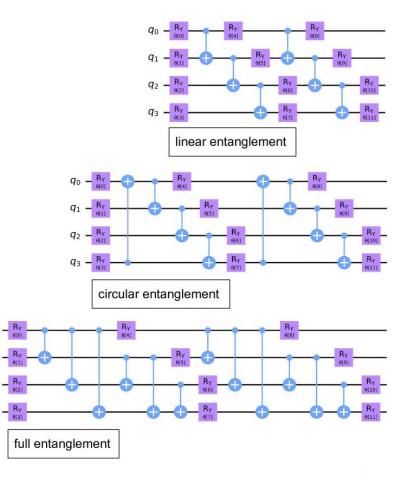
Thank you

Designing a Quantum Circuit II

Two Local configurations as benchmarks

- Direct entanglements only possible if qubits on devices are connected, otherwise, one has to propagate values through the circuit
- Error rates of qubits and gates vary





.

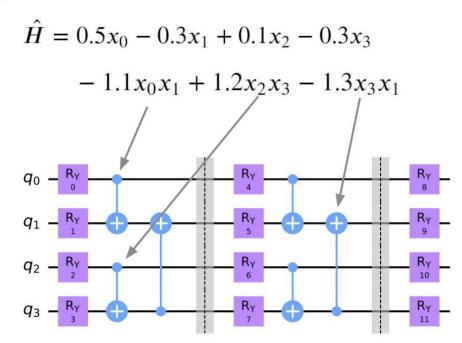
DESY.

Designing a Quantum Circuit III

Dynamically created hamiltonian-aware ansatz

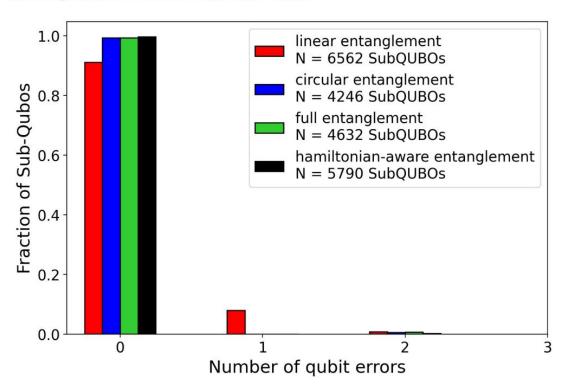
- Structure of the ansatz resembles structure of the hamiltonian
- CX gates have a high error probability

 → use as few controlled CX gates as
 possible



Performance on ideal simulation

Solving success and time performance



Solving time / SubQUBO:

Linear: 2.17 ± 0.31s

• Circular: 3.62 ± 0.14s

• Full: $4.79 \pm 0.54s$

custom: 3.35 ± 0.33s

QAOA

Solving the subQubo

- -QAOA can be viewed as a special case of VQE.
- Hamiltonian contains only Z terms, we do not need to change the basis for measurements.

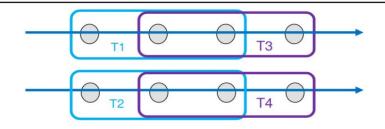
Differences to VQE:

- The form of the ansatz is limited
- Restricted to Ising Hamiltonians
- In QAOA our goal is to find the solution to the problem. To do that we don't need to find the ground state.

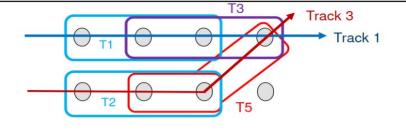
QUBOs

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ij} T_i T_j \quad T \in \{0, 1\}$$

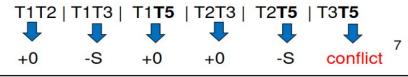
$$b_{ij} = \begin{cases} -S(Ti, Tj), & \text{if } (T_i, T_j) \text{ form a quadruplet,} \\ \zeta & \text{if } (T_i, T_j) \text{ are in conflict,} \\ 0 & \text{otherwise.} \end{cases}$$



[T1, T2, T3,T4]→combinations:



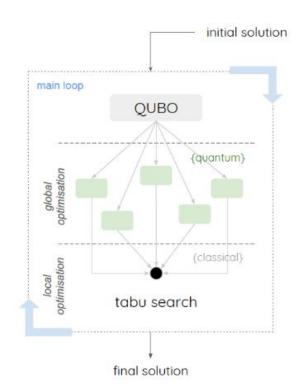
 $[T1, T2, T3, T5] \rightarrow combinations:$

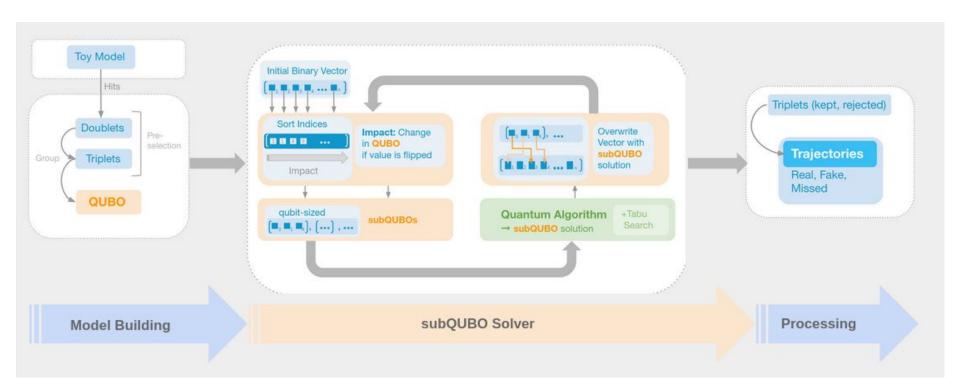


SubQubos

Problem: Devices restricted to small number of qubits

- Big QUBOS cannot be simulates
- Break QUBO into subsets → subQUBOS!
- Iterated vector converges to solution vector





LUXE setup

