Multi-parameter Conditioning of Generative Models for Fast Simulation of Highly Granular Calorimeter Showers

Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii Korol, Katja Krüger, **Peter McKeown**¹, Lennart Rustige

¹Deutsches Elektronen-Synchrotron 22.03.2023

peter.mckeown@desy.de

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

The ILD Concept

- Context: Future Higgs Factories
- Case Study: International Large Detector (ILD) concept for the International Linear Collider (ILC)
- Optimized for Particle Flow
 - Reconstruct each individual particle in subdetector
 - Obtain optimal detector resolution
- Key features:
 - Precise tracking and vertexing
 - Excellent hermeticity
 - High granularity calorimeters

The ILD Electromagnetic Calorimeter

- Destructively measure particle's energy
 - Produce shower of secondary particles until totally absorbed
- Sampling calorimeter- measure fraction of energy
- ILD proposal: Si-W ECAL
 - 30 layers of alternating active (Si) and passive (W) material
 - 5x5 mm² silicon cells
 - ~ 80 million channels for barrel

Passive absorber
Shower of secondary particles
Incoming particle
Detectors

c.f. a few cm² for ATLAS/CMS ECAL (before High Lumi)

High granularity → High fidelity

The Strain on HEP Computing Resources

- Ever increasing demand for computing resources
 - MC simulation largest fraction
 - Calorimeters most intensive part of detector simulation

WALL CLOCK CONSUMPTION PER WORKFLOW

D. Costanzo, J. Catmore, ATLAS Computing update, LHCC meeting , 2019

The Strain on HEP Computing Resources

- Ever increasing demand for computing resources
 - MC simulation largest fraction
 - Calorimeters most intensive part of detector simulation
- Projected computing resources required far outstrip what will be available
 - E.g HL-LHC
- Future lepton colliders also benefit from much faster
 MC
- Generative models potentially offer orders of magnitude speed up

CMS Collaboration, Offline and Computing Public Results (2021), https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Generative Models

- Approach to fast simulation- amplify statistics
- Aim: augment full physics-based GEANT4 simulation by learning a transfer function
- Promising solution: generative models
 - Generate new samples following the distribution of original data
 - Map random noise to data
 - Highly parallelizable
 - Conditioning (E.g., E, θ , ϕ)

Butter et al., **GANplifying event samples**, SciPost Phys. 10, 139, (2021)

Common Generative Models

Variational Autoencoder (VAE)

Encode

- **VAE**¹: Encoder-decoder structure
- **GAN**²: Adversarial feedback from discriminator

Generative Adversarial Network (GAN)

¹D.P. Kingma, M. Welling. Auto-encoding Variational Bayes (2014), <u>arXiv:1312.6114</u>

Decode

²Goodfellow et. al., Generative Adversarial Nets (2014), arXiv:1406.2661

Architectures: BIB-AE

Voloshynovskiy et. al: Information bottleneck through variational glasses, arXiv:1912.00830, (2019)

Buhmann et. al: Getting High: High **Fidelity Simulation of High Granularity** Calorimeters with High Speed,

CSBS 5, 13, (2021)

Bounded-Information Bottleneck Autoencoder (BIB-AE)

Unifies features of both **GANs** and **VAEs**

Buhmann et. al., Hadrons, Better, Faster, Stronger, MLST 3 025014, (2022)

Post-Processor network: Improve per-pixel energies; second training

Previous work

- **Cell energy spectrum** has a very steep rise (Minimum Ionizing Particle (MIP) peak- important for detector calibration)
 - Difficult to model with an adversarial approach
 - More sophisticated BIB-AE successfully reproduces MIP peak

Buhmann et. al: **Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed**,

<u>CSBS 5, 13,</u> (2021)

Buhmann et. al., **Hadrons, Better, Faster, Stronger**, MLST 3 025014, (2022)

Two New Angles

Multi-Parameter Conditioning

- Simultaneous conditioning on multiple parameters crucial for a general simulation tool
 - Start with photons
 - Vary incident energy and angle

Study effects of reconstruction

- Ultimate goal is physics performance after reconstruction
- Want our models to maintain performance after reconstruction
 - Compare observables before and after

Training data

- 500,000 photons with fixed incident point
- Vary energy: 10-100 GeV
- Vary polar angle in one direction: 90°-30°
- Project to regular grid
 - Shape (30,60,30) (x,y,z)

Test data

- Choose fixed combinations of energies and angles
- **9 points** in the phase space in total
- Avoid phase space boundaries
- Investigate how well generative model learns key physics properties of showers:
 - Visible energy sum
 - Number of hits and Hit energy spectrum
 - Shower profiles
 - Angular response

Results: Angular resolution- Sim vs Reco

Results: Visible Energy Sum- Sim vs Reco
40 degrees
60 degrees

Results: Cell Energy Examples Sim vs Reco

Conclusion

Achieved

- Generative models hold promise for fast simulation of calorimeter showers with high fidelity
- Demonstrated high fidelity simulation of photon showers with angular and energy conditioning
- Investigated generative model performance after **reconstruction**

Paper out soon!

Performance remains high

Next Steps

- Develop strategy for dealing with arbitrary incident positions
 - Dealing with irregular geometries- see talk by A. Korol (T 86.6) at 18:45
- Integration into software chain and study physics performance

Backup

Architectures: BIB-AE

More Details

- Unifies features of both GANs and VAEs
- Adversarial critic networks rather than pixel-wise difference a la VAEs
- Improved latent regularisation: additional critic and MMD term
- Post-Processor network: Improve per-pixel energies; second training

- Updates and improvements:
 - Dual and resetting critics: prevent artifacts caused by sparsity
 - Batch Statistics: prevent outliers/ mode collapse
 - Multi-dimensional KDE sampling: better modeling of latent space

Adaption to Highly Granular Calorimeter Shower Data

- Highly granular calorimeter data is very sparse
 - Causes problems for an MSE based loss
 - Switch to a discriminator based approach
- Cell energy spectrum has a very steep rise (MIP peak- important for calibration)
 - Difficult to model with an adversarial approach...

- Offload to separate Post Processor network:
 - 3D convolutions, kernel size 1
 - MSE loss and Sorted Kernel MMD loss
 - Encourage network to modify individual pixels

Buhmann et. al: **Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed**,

<u>CSBS 5, 13</u> (2021)

Computing Time for Inference

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	GEANT4	4417 ± 83	×1
	BIB-AE	362 ± 2	$\times 12$
GPU	BIB-AE	4.32 ± 0.09	×1022

Speed-up of as much as three orders of magnitude on single core of Intel[®] Xeon[®] CPU E5-2640 v4 and NVIDIA[®] A100 for the best performing batch size

Latent Space sampling

- Relaxing regularisation of latent space allows more information to be stored
 - Latent space deviates from a Normal distribution
- Employ density estimation to produce latent sample (normalising flow)
- Improve modeling of shower shape (center of gravity)

Buhmann et. al: **Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network**,

<u>EPJ Web of Conferences 251, 03003</u> (2021)

Results: Energy resolution Sim vs Rec

Results: Longitudinal Profile

Results: Center of Gravity

Results: Radial Profile

Results: Number of Hits

